Search Results


[Top]

Help pages:

e1071::bclust Bagged Clustering
e1071::cmeans Fuzzy C-Means Clustering
e1071::cshell Fuzzy C-Shell Clustering
e1071::fclustIndex Fuzzy Cluster Indexes (Validity/Performance Measures)
e1071::lca Latent Class Analysis (LCA)
mclust::Mclust Model-Based Clustering
mclust::MclustBootstrap Resampling-based Inference for Gaussian finite mixture models
mclust::adjustedRandIndex Adjusted Rand Index
mclust::bic BIC for Parameterized Gaussian Mixture Models
mclust::cdens Component Density for Parameterized MVN Mixture Models
mclust::cdensE Component Density for a Parameterized MVN Mixture Model
mclust::cdfMclust Cumulative Distribution and Quantiles for a univariate Gaussian mixture distribution
mclust::clPairs Pairwise Scatter Plots showing Classification
mclust::classError Classification error
mclust::clustCombi Combining Gaussian Mixture Components for Clustering
mclust::clustCombiOptim Optimal number of clusters obtained by combining mixture components
mclust::combMat Combining Matrix
mclust::combiPlot Plot Classifications Corresponding to Successive Combined Solutions
mclust::combiTree Tree structure obtained from combining mixture components
mclust::coordProj Coordinate projections of multidimensional data modeled by an MVN mixture.
mclust::decomp2sigma Convert mixture component covariances to matrix form
mclust::defaultPrior Default conjugate prior for Gaussian mixtures
mclust::dens Density for Parameterized MVN Mixtures
mclust::densityMclust Density Estimation via Model-Based Clustering
mclust::densityMclust.diagnostic Diagnostic plots for 'mclustDensity' estimation
mclust::dupPartition Partition the data by grouping together duplicated data
mclust::em EM algorithm starting with E-step for parameterized Gaussian mixture models
mclust::emControl Set control values for use with the EM algorithm
mclust::emE EM algorithm starting with E-step for a parameterized Gaussian mixture model
mclust::entPlot Plot Entropy Plots
mclust::estep E-step for parameterized Gaussian mixture models.
mclust::estepE E-step in the EM algorithm for a parameterized Gaussian mixture model.
mclust::gmmhd Identifying Connected Components in Gaussian Finite Mixture Models for Clustering
mclust::hc Model-based Agglomerative Hierarchical Clustering
mclust::hcE Model-based Hierarchical Clustering
mclust::hcRandomPairs Random hierarchical structure
mclust::hclass Classifications from Hierarchical Agglomeration
mclust::hypvol Aproximate Hypervolume for Multivariate Data
mclust::icl ICL for an estimated Gaussian Mixture Model
mclust::imputeData Missing data imputation via the 'mix' package
mclust::imputePairs Pairwise Scatter Plots showing Missing Data Imputations
mclust::map Classification given Probabilities
mclust::mapClass Correspondence between classifications
mclust::mclust.options Default values for use with MCLUST package
mclust::mclust1Dplot Plot one-dimensional data modeled by an MVN mixture.
mclust::mclust2Dplot Plot two-dimensional data modelled by an MVN mixture
mclust::mclustBIC BIC for Model-Based Clustering
mclust::mclustBICupdate Update BIC values for parameterized Gaussian mixture models
mclust::mclustBootstrapLRT Bootstrap Likelihood Ratio Test for the Number of Mixture Components
mclust::mclustICL ICL Criterion for Model-Based Clustering
mclust::mclustLoglik Log-likelihood from a table of BIC values for parameterized Gaussian mixture models
mclust::mclustModel Best model based on BIC
mclust::mclustModelNames MCLUST Model Names
mclust::mclustVariance Template for variance specification for parameterized Gaussian mixture models
mclust::me EM algorithm starting with M-step for parameterized MVN mixture models
mclust::meE EM algorithm starting with M-step for a parameterized Gaussian mixture model
mclust::mstep M-step for parameterized Gaussian mixture models
mclust::mstepE M-step for a parameterized Gaussian mixture model
mclust::mvn Univariate or Multivariate Normal Fit
mclust::mvnX Univariate or Multivariate Normal Fit
mclust::nMclustParams Number of Estimated Parameters in Gaussian Mixture Models
mclust::nVarParams Number of Variance Parameters in Gaussian Mixture Models
mclust::partconv Numeric Encoding of a Partitioning
mclust::partuniq Classifies Data According to Unique Observations
mclust::plot.Mclust Plotting method for Mclust model-based clustering
mclust::plot.MclustBootstrap Plot of bootstrap distributions for mixture model parameters
mclust::plot.clustCombi Plot Combined Clusterings Results
mclust::plot.densityMclust Plots for Mixture-Based Density Estimate
mclust::plot.hc Dendrograms for Model-based Agglomerative Hierarchical Clustering
mclust::plot.mclustBIC BIC Plot for Model-Based Clustering
mclust::plot.mclustICL ICL Plot for Model-Based Clustering
mclust::priorControl Conjugate Prior for Gaussian Mixtures.
mclust::randProj Random projections of multidimensional data modeled by an MVN mixture
mclust::sigma2decomp Convert mixture component covariances to decomposition form.
mclust::sim Simulate from Parameterized MVN Mixture Models
mclust::simE Simulate from a Parameterized MVN Mixture Model
mclust::summary.Mclust Summarizing Gaussian Finite Mixture Model Fits
mclust::summary.MclustBootstrap Summary Function for Bootstrap Inference for Gaussian Finite Mixture Models
mclust::summary.mclustBIC Summary function for model-based clustering via BIC
mclust::surfacePlot Density or uncertainty surface for bivariate mixtures
mclust::uncerPlot Uncertainty Plot for Model-Based Clustering
mclust::unmap Indicator Variables given Classification
proxy::dist Matrix Distance/Similarity Computation
proxy::pr_DB Registry of proximities
proxy::rowSums.dist Row Sums/Means of Sparse Symmetric Matrices
cluster::agnes Agglomerative Nesting (Hierarchical Clustering)
cluster::agnes.object Agglomerative Nesting (AGNES) Object
cluster::bannerplot Plot Banner (of Hierarchical Clustering)
cluster::clara Clustering Large Applications
cluster::clara.object Clustering Large Applications (CLARA) Object
cluster::clusGap Gap Statistic for Estimating the Number of Clusters
cluster::clusplot.default Bivariate Cluster Plot (clusplot) Default Method
cluster::clusplot Bivariate Cluster Plot (of a Partitioning Object)
cluster::coefHier Agglomerative / Divisive Coefficient for 'hclust' Objects
cluster::daisy Dissimilarity Matrix Calculation
cluster::diana DIvisive ANAlysis Clustering
cluster::dissimilarity.object Dissimilarity Matrix Object
cluster::fanny Fuzzy Analysis Clustering
cluster::fanny.object Fuzzy Analysis (FANNY) Object
cluster::medoids Compute 'pam'-consistent Medoids from Clustering
cluster::mona MONothetic Analysis Clustering of Binary Variables
cluster::mona.object Monothetic Analysis (MONA) Object
cluster::pam Partitioning Around Medoids
cluster::pam.object Partitioning Around Medoids (PAM) Object
cluster::partition Partitioning Object
cluster::plot.agnes Plots of an Agglomerative Hierarchical Clustering
cluster::plot.diana Plots of a Divisive Hierarchical Clustering
cluster::plot.mona Banner of Monothetic Divisive Hierarchical Clusterings
cluster::plot.partition Plot of a Partition of the Data Set
cluster::pltree Plot Clustering Tree of a Hierarchical Clustering
cluster::print.agnes Print Method for AGNES Objects
cluster::print.clara Print Method for CLARA Objects
cluster::print.diana Print Method for DIANA Objects
cluster::print.dissimilarity Print and Summary Methods for Dissimilarity Objects
cluster::print.fanny Print and Summary Methods for FANNY Objects
cluster::print.mona Print Method for MONA Objects
cluster::print.pam Print Method for PAM Objects
cluster::silhouette Compute or Extract Silhouette Information from Clustering
cluster::summary.agnes Summary Method for 'agnes' Objects
cluster::summary.clara Summary Method for 'clara' Objects
cluster::summary.diana Summary Method for 'diana' Objects
cluster::summary.mona Summary Method for 'mona' Objects
cluster::summary.pam Summary Method for PAM Objects
cluster::twins.object Hierarchical Clustering Object
stats::as.hclust Convert Objects to Class hclust
stats::cophenetic Cophenetic Distances for a Hierarchical Clustering
stats::cutree Cut a Tree into Groups of Data
stats::dist Distance Matrix Computation
stats::hclust Hierarchical Clustering
stats::identify.hclust Identify Clusters in a Dendrogram
stats::kmeans K-Means Clustering
stats::rect.hclust Draw Rectangles Around Hierarchical Clusters