car::Anova | Anova Tables for Various Statistical Models | |
car::Contrasts | Functions to Construct Contrasts | |
car::Predict | Model Predictions | |
car::S | Modified Functions for Summarizing Linear, Generalized Linear, and Some Other Models | |
car::deltaMethod | Estimate and Standard Error of a Nonlinear Function of Estimated Regression Coefficients | |
car::influence.mixed.models | Influence Diagnostics for Mixed-Effects Models | |
car::linearHypothesis | Test Linear Hypothesis | |
car::poTest | Test for Proportional Odds in the Proportional-Odds Logistic-Regression Model | |
e1071::plot.tune | Plot Tuning Object | |
e1071::tune | Parameter Tuning of Functions Using Grid Search | |
e1071::tune.control | Control Parameters for the Tune Function | |
e1071::tune.wrapper | Convenience Tuning Wrapper Functions | |
estimability::epredict | Estimability Enhancements for 'lm' and Relatives | |
estimability::estble.subspace | Find an estimable subspace | |
estimability::estimability-package | Estimability Tools for Linear Models | |
estimability::nonest.basis | Estimability Tools | |
lme4::VarCorr | Extract Variance and Correlation Components | |
lme4::allFit | Refit a fitted model with all available optimizers | |
lme4::bootMer | Model-based (Semi-)Parametric Bootstrap for Mixed Models | |
lme4::expandDoubleVerts | Expand terms with "||" notation into separate "|" terms | |
lme4::factorize | Attempt to convert grouping variables to factors | |
lme4::findbars | Determine random-effects expressions from a formula | |
lme4::fixed.effects | Extract fixed-effects estimates | |
lme4::glmer | Fitting Generalized Linear Mixed-Effects Models | |
lme4::glmer.nb | Fitting Negative Binomial GLMMs | |
lme4::influence.merMod | Influence Diagnostics for Mixed-Effects Models | |
lme4::lmList | Fit List of lm or glm Objects with a Common Model | |
lme4::lmer | Fit Linear Mixed-Effects Models | |
lme4::glFormula | Modular Functions for Mixed Model Fits | |
lme4::nlmer | Fitting Nonlinear Mixed-Effects Models | |
lme4::nobars | Omit terms separated by vertical bars in a formula | |
lme4::ranef | Extract the modes of the random effects | |
lme4::subbars | "Sub[stitute] Bars" | |
MatrixModels::glm4 | Fitting Generalized Linear Models (using S4) | |
MatrixModels::mkRespMod | Create a respModule object | |
MatrixModels::model.Matrix | Construct Possibly Sparse Design or Model Matrices | |
MatrixModels::resid,ANY-method | Aliases for Model Extractors | |
multcomp::mmm | Simultaneous Inference for Multiple Marginal Models | |
pbkrtest::get_ddf_Lb | Adjusted denomintor degress freedom for linear estimate for linear mixed model. | |
pbkrtest::kr-modcomp | F-test and degrees of freedom based on Kenward-Roger approximation | |
pbkrtest::kr-vcov | Ajusted covariance matrix for linear mixed models according to Kenward and Roger | |
pbkrtest::pb-modcomp | Model comparison using parametric bootstrap methods. | |
pbkrtest::pb-refdist | Calculate reference distribution using parametric bootstrap | |
pbkrtest::sat-modcomp | F-test and degrees of freedom based on Satterthwaite approximation | |
quantreg::nlrq | Function to compute nonlinear quantile regression estimates | |
quantreg::residuals.nlrq | Return residuals of an nlrq object | |
s20x::crossFactors | Crossed Factors | |
s20x::estimateContrasts | Contrast Estimates | |
s20x::rr | Read Data | |
s20x::summary1way | One-way Analysis of Variance Summary | |
s20x::summary2way | Two-way Analysis of Variance Summary | |
sp::select.spatial | select points spatially | |
survey::SE | Extract standard errors | |
survey::svymle | Maximum pseudolikelihood estimation in complex surveys | |
base::I | Inhibit Interpretation/Conversion of Objects | |
base::expand.grid | Create a Data Frame from All Combinations of Factor Variables | |
base::labels | Find Labels from Object | |
base::~ | Tilde Operator | |
MASS::addterm | Try All One-Term Additions to a Model | |
MASS::boxcox | Box-Cox Transformations for Linear Models | |
MASS::confint.glm | Confidence Intervals for Model Parameters | |
MASS::contr.sdif | Successive Differences Contrast Coding | |
MASS::denumerate | Transform an Allowable Formula for 'loglm' into one for 'terms' | |
MASS::dose.p | Predict Doses for Binomial Assay model | |
MASS::dropterm | Try All One-Term Deletions from a Model | |
MASS::gamma.dispersion | Calculate the MLE of the Gamma Dispersion Parameter in a GLM Fit | |
MASS::gamma.shape | Estimate the Shape Parameter of the Gamma Distribution in a GLM Fit | |
MASS::glm.convert | Change a Negative Binomial fit to a GLM fit | |
MASS::glm.nb | Fit a Negative Binomial Generalized Linear Model | |
MASS::glmmPQL | Fit Generalized Linear Mixed Models via PQL | |
MASS::lm.gls | Fit Linear Models by Generalized Least Squares | |
MASS::lm.ridge | Ridge Regression | |
MASS::loglm | Fit Log-Linear Models by Iterative Proportional Scaling | |
MASS::logtrans | Estimate log Transformation Parameter | |
MASS::lqs | Resistant Regression | |
MASS::negative.binomial | Family function for Negative Binomial GLMs | |
MASS::plot.profile | Plotting Functions for 'profile' Objects | |
MASS::polr | Ordered Logistic or Probit Regression | |
MASS::predict.glmmPQL | Predict Method for glmmPQL Fits | |
MASS::predict.lqs | Predict from an lqs Fit | |
MASS::profile.glm | Method for Profiling glm Objects | |
MASS::renumerate | Convert a Formula Transformed by 'denumerate' | |
MASS::rlm | Robust Fitting of Linear Models | |
MASS::stdres | Extract Standardized Residuals from a Linear Model | |
MASS::stepAIC | Choose a model by AIC in a Stepwise Algorithm | |
MASS::studres | Extract Studentized Residuals from a Linear Model | |
MASS::summary.loglm | Summary Method Function for Objects of Class 'loglm' | |
MASS::summary.negbin | Summary Method Function for Objects of Class 'negbin' | |
MASS::theta.md | Estimate theta of the Negative Binomial | |
Matrix::sparse.model.matrix | Construct Sparse Design / Model Matrices | |
mgcv::betar | GAM beta regression family | |
mgcv::FFdes | Level 5 fractional factorial designs | |
mgcv::Predict.matrix | Prediction methods for smooth terms in a GAM | |
mgcv::Predict.matrix.cr.smooth | Predict matrix method functions | |
mgcv::Predict.matrix.soap.film | Prediction matrix for soap film smooth | |
mgcv::Rrank | Find rank of upper triangular matrix | |
mgcv::Tweedie | GAM Tweedie families | |
mgcv::XWXd | Internal functions for discretized model matrix handling | |
mgcv::anova.gam | Approximate hypothesis tests related to GAM fits | |
mgcv::bam | Generalized additive models for very large datasets | |
mgcv::bam.update | Update a strictly additive bam model for new data. | |
mgcv::bandchol | Choleski decomposition of a band diagonal matrix | |
mgcv::blas.thread.test | BLAS thread safety | |
mgcv::cSplineDes | Evaluate cyclic B spline basis | |
mgcv::choldrop | Deletion and rank one Cholesky factor update | |
mgcv::choose.k | Basis dimension choice for smooths | |
mgcv::cnorm | GAM censored normal family for log-normal AFT and Tobit models | |
mgcv::cox.ph | Additive Cox Proportional Hazard Model | |
mgcv::cox.pht | Additive Cox proportional hazard models with time varying covariates | |
mgcv::dpnorm | Stable evaluation of difference between normal c.d.f.s | |
mgcv::extract.lme.cov | Extract the data covariance matrix from an lme object | |
mgcv::factor.smooth.interaction | Factor smooth interactions in GAMs | |
mgcv::family.mgcv | Distribution families in mgcv | |
mgcv::fix.family.link | Modify families for use in GAM fitting and checking | |
mgcv::fixDependence | Detect linear dependencies of one matrix on another | |
mgcv::formXtViX | Form component of GAMM covariance matrix | |
mgcv::formula.gam | GAM formula | |
mgcv::fs.test | FELSPLINE test function | |
mgcv::full.score | GCV/UBRE score for use within nlm | |
mgcv::gam | Generalized additive models with integrated smoothness estimation | |
mgcv::gam.check | Some diagnostics for a fitted gam model | |
mgcv::gam.control | Setting GAM fitting defaults | |
mgcv::gam.convergence | GAM convergence and performance issues | |
mgcv::gam.fit | GAM P-IRLS estimation with GCV/UBRE smoothness estimation | |
mgcv::gam.fit3 | P-IRLS GAM estimation with GCV, UBRE/AIC or RE/ML derivative calculation | |
mgcv::gam.mh | Simple posterior simulation with gam fits | |
mgcv::gam.models | Specifying generalized additive models | |
mgcv::gam.outer | Minimize GCV or UBRE score of a GAM using 'outer' iteration | |
mgcv::gam.scale | Scale parameter estimation in GAMs | |
mgcv::gam.selection | Generalized Additive Model Selection | |
mgcv::gam.side | Identifiability side conditions for a GAM | |
mgcv::gam.vcomp | Report gam smoothness estimates as variance components | |
mgcv::gam2objective | Objective functions for GAM smoothing parameter estimation | |
mgcv::gamObject | Fitted gam object | |
mgcv::gamSim | Simulate example data for GAMs | |
mgcv::gamm | Generalized Additive Mixed Models | |
mgcv::gammals | Gamma location-scale model family | |
mgcv::gaulss | Gaussian location-scale model family | |
mgcv::get.var | Get named variable or evaluate expression from list or data.frame | |
mgcv::gevlss | Generalized Extreme Value location-scale model family | |
mgcv::ginla | GAM Integrated Nested Laplace Approximation Newton Enhanced | |
mgcv::gumbls | Gumbel location-scale model family | |
mgcv::identifiability | Identifiability constraints | |
mgcv::inSide | Are points inside boundary? | |
mgcv::influence.gam | Extract the diagonal of the influence/hat matrix for a GAM | |
mgcv::initial.sp | Starting values for multiple smoothing parameter estimation | |
mgcv::interpret.gam | Interpret a GAM formula | |
mgcv::jagam | Just Another Gibbs Additive Modeller: JAGS support for mgcv. | |
mgcv::k.check | Checking smooth basis dimension | |
mgcv::ldTweedie | Log Tweedie density evaluation | |
mgcv::linear.functional.terms | Linear functionals of a smooth in GAMs | |
mgcv::logLik.gam | AIC and Log likelihood for a fitted GAM | |
mgcv::magic | Stable Multiple Smoothing Parameter Estimation by GCV or UBRE | |
mgcv::magic.post.proc | Auxilliary information from magic fit | |
mgcv::mgcv.FAQ | Frequently Asked Questions for package mgcv | |
mgcv::mgcv.package | Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL | |
mgcv::mgcv.parallel | Parallel computation in mgcv. | |
mgcv::model.matrix.gam | Extract model matrix from GAM fit | |
mgcv::mono.con | Monotonicity constraints for a cubic regression spline | |
mgcv::mroot | Smallest square root of matrix | |
mgcv::multinom | GAM multinomial logistic regression | |
mgcv::mvn | Multivariate normal additive models | |
mgcv::negbin | GAM negative binomial families | |
mgcv::new.name | Obtain a name for a new variable that is not already in use | |
mgcv::notExp | Functions for better-than-log positive parameterization | |
mgcv::notExp2 | Alternative to log parameterization for variance components | |
mgcv::null.space.dimension | The basis of the space of un-penalized functions for a TPRS | |
mgcv::ocat | GAM ordered categorical family | |
mgcv::one.se.rule | The one standard error rule for smoother models | |
mgcv::pcls | Penalized Constrained Least Squares Fitting | |
mgcv::pdIdnot | Overflow proof pdMat class for multiples of the identity matrix | |
mgcv::pdTens | Functions implementing a pdMat class for tensor product smooths | |
mgcv::pen.edf | Extract the effective degrees of freedom associated with each penalty in a gam fit | |
mgcv::place.knots | Automatically place a set of knots evenly through covariate values | |
mgcv::plot.gam | Default GAM plotting | |
mgcv::polys.plot | Plot geographic regions defined as polygons | |
mgcv::predict.bam | Prediction from fitted Big Additive Model model | |
mgcv::predict.gam | Prediction from fitted GAM model | |
mgcv::print.gam | Print a Generalized Additive Model object. | |
mgcv::psum.chisq | Evaluate the c.d.f. of a weighted sum of chi-squared deviates | |
mgcv::qq.gam | QQ plots for gam model residuals | |
mgcv::rTweedie | Generate Tweedie random deviates | |
mgcv::residuals.gam | Generalized Additive Model residuals | |
mgcv::rmvn | Generate from or evaluate multivariate normal or t densities. | |
mgcv::s | Defining smooths in GAM formulae | |
mgcv::scat | GAM scaled t family for heavy tailed data | |
mgcv::sdiag | Extract or modify diagonals of a matrix | |
mgcv::single.index | Single index models with mgcv | |
mgcv::slanczos | Compute truncated eigen decomposition of a symmetric matrix | |
mgcv::smooth.construct | Constructor functions for smooth terms in a GAM | |
mgcv::smooth.construct.ad.smooth.spec | Adaptive smooths in GAMs | |
mgcv::smooth.construct.bs.smooth.spec | Penalized B-splines in GAMs | |
mgcv::smooth.construct.cr.smooth.spec | Penalized Cubic regression splines in GAMs | |
mgcv::smooth.construct.ds.smooth.spec | Low rank Duchon 1977 splines | |
mgcv::smooth.construct.fs.smooth.spec | Factor smooth interactions in GAMs | |
mgcv::smooth.construct.gp.smooth.spec | Low rank Gaussian process smooths | |
mgcv::smooth.construct.mrf.smooth.spec | Markov Random Field Smooths | |
mgcv::smooth.construct.ps.smooth.spec | P-splines in GAMs | |
mgcv::smooth.construct.re.smooth.spec | Simple random effects in GAMs | |
mgcv::smooth.construct.so.smooth.spec | Soap film smoother constructer | |
mgcv::smooth.construct.sos.smooth.spec | Splines on the sphere | |
mgcv::smooth.construct.sz.smooth.spec | Constrained factor smooth interactions in GAMs | |
mgcv::smooth.construct.t2.smooth.spec | Tensor product smoothing constructor | |
mgcv::smooth.construct.tensor.smooth.spec | Tensor product smoothing constructor | |
mgcv::smooth.construct.tp.smooth.spec | Penalized thin plate regression splines in GAMs | |
mgcv::smooth.info | Generic function to provide extra information about smooth specification | |
mgcv::smooth2random | Convert a smooth to a form suitable for estimating as random effect | |
mgcv::smoothCon | Prediction/Construction wrapper functions for GAM smooth terms | |
mgcv::sp.vcov | Extract smoothing parameter estimator covariance matrix from (RE)ML GAM fit | |
mgcv::spasm.construct | Experimental sparse smoothers | |
mgcv::step.gam | Alternatives to step.gam | |
mgcv::summary.gam | Summary for a GAM fit | |
mgcv::t2 | Define alternative tensor product smooths in GAM formulae | |
mgcv::te | Define tensor product smooths or tensor product interactions in GAM formulae | |
mgcv::tensor.prod.model.matrix | Row Kronecker product/ tensor product smooth construction | |
mgcv::trichol | Choleski decomposition of a tri-diagonal matrix | |
mgcv::twlss | Tweedie location scale family | |
mgcv::uniquecombs | find the unique rows in a matrix | |
mgcv::vcov.gam | Extract parameter (estimator) covariance matrix from GAM fit | |
mgcv::vis.gam | Visualization of GAM objects | |
mgcv::ziP | GAM zero-inflated (hurdle) Poisson regression family | |
mgcv::ziplss | Zero inflated (hurdle) Poisson location-scale model family | |
nlme::ACF | Autocorrelation Function | |
nlme::ACF.gls | Autocorrelation Function for gls Residuals | |
nlme::ACF.lme | Autocorrelation Function for lme Residuals | |
nlme::coef<- | Assign Values to Coefficients | |
nlme::covariate<- | Assign Covariate Values | |
nlme::covariate<-.varFunc | Assign varFunc Covariate | |
nlme::Dim | Extract Dimensions from an Object | |
nlme::Dim.corSpatial | Dimensions of a corSpatial Object | |
nlme::Dim.corStruct | Dimensions of a corStruct Object | |
nlme::Dim.pdMat | Dimensions of a pdMat Object | |
nlme::[.pdMat | Subscript a pdMat Object | |
nlme::Initialize | Initialize Object | |
nlme::Initialize.corStruct | Initialize corStruct Object | |
nlme::Initialize.glsStruct | Initialize a glsStruct Object | |
nlme::Initialize.lmeStruct | Initialize an lmeStruct Object | |
nlme::Initialize.reStruct | Initialize reStruct Object | |
nlme::Initialize.varFunc | Initialize varFunc Object | |
nlme::LDEsysMat | Generate system matrix for LDEs | |
nlme::matrix<- | Assign Matrix Values | |
nlme::matrix<-.pdMat | Assign Matrix to a pdMat or pdBlocked Object | |
nlme::matrix<-.reStruct | Assign reStruct Matrices | |
nlme::Names | Names Associated with an Object | |
nlme::Names.formula | Extract Names from a formula | |
nlme::Names.pdBlocked | Names of a pdBlocked Object | |
nlme::Names.pdMat | Names of a pdMat Object | |
nlme::Names.reStruct | Names of an reStruct Object | |
nlme::VarCorr | Extract variance and correlation components | |
nlme::Variogram | Calculate Semi-variogram | |
nlme::Variogram.corExp | Calculate Semi-variogram for a corExp Object | |
nlme::Variogram.corGaus | Calculate Semi-variogram for a corGaus Object | |
nlme::Variogram.corLin | Calculate Semi-variogram for a corLin Object | |
nlme::Variogram.corRatio | Calculate Semi-variogram for a corRatio Object | |
nlme::Variogram.corSpatial | Calculate Semi-variogram for a corSpatial Object | |
nlme::Variogram.corSpher | Calculate Semi-variogram for a corSpher Object | |
nlme::Variogram.default | Calculate Semi-variogram | |
nlme::Variogram.gls | Calculate Semi-variogram for Residuals from a gls Object | |
nlme::Variogram.lme | Calculate Semi-variogram for Residuals from an lme Object | |
nlme::allCoef | Extract Coefficients from a Set of Objects | |
nlme::anova.gls | Compare Likelihoods of Fitted Objects | |
nlme::anova.lme | Compare Likelihoods of Fitted Objects | |
nlme::as.matrix.corStruct | Matrix of a corStruct Object | |
nlme::as.matrix.pdMat | Matrix of a pdMat Object | |
nlme::as.matrix.reStruct | Matrices of an reStruct Object | |
nlme::asOneFormula | Combine Formulas of a Set of Objects | |
nlme::augPred | Augmented Predictions | |
nlme::coef.corStruct | Coefficients of a corStruct Object | |
nlme::coef.gnls | Extract gnls Coefficients | |
nlme::coef.lmList | Extract lmList Coefficients | |
nlme::coef.lme | Extract lme Coefficients | |
nlme::coef.modelStruct | Extract modelStruct Object Coefficients | |
nlme::coef.pdMat | pdMat Object Coefficients | |
nlme::coef.reStruct | reStruct Object Coefficients | |
nlme::coef.varFunc | varFunc Object Coefficients | |
nlme::collapse | Collapse According to Groups | |
nlme::collapse.groupedData | Collapse a groupedData Object | |
nlme::compareFits | Compare Fitted Objects | |
nlme::comparePred | Compare Predictions | |
nlme::corAR1 | AR(1) Correlation Structure | |
nlme::corARMA | ARMA(p,q) Correlation Structure | |
nlme::corCAR1 | Continuous AR(1) Correlation Structure | |
nlme::corClasses | Correlation Structure Classes | |
nlme::corCompSymm | Compound Symmetry Correlation Structure | |
nlme::corExp | Exponential Correlation Structure | |
nlme::corFactor | Factor of a Correlation Matrix | |
nlme::corFactor.corCompSymm | Factor of a corStruct Object Matrix | |
nlme::corGaus | Gaussian Correlation Structure | |
nlme::corLin | Linear Correlation Structure | |
nlme::corMatrix | Extract Correlation Matrix | |
nlme::corMatrix.corStruct | Matrix of a corStruct Object | |
nlme::corMatrix.pdBlocked | Extract Correlation Matrix from a pdMat Object | |
nlme::corMatrix.reStruct | Extract Correlation Matrix from Components of an reStruct Object | |
nlme::corNatural | General correlation in natural parameterization | |
nlme::corRatio | Rational Quadratic Correlation Structure | |
nlme::corSpatial | Spatial Correlation Structure | |
nlme::corSpher | Spherical Correlation Structure | |
nlme::corSymm | General Correlation Structure | |
nlme::fdHess | Finite difference Hessian | |
nlme::fitted.glsStruct | Calculate glsStruct Fitted Values | |
nlme::fitted.gnlsStruct | Calculate gnlsStruct Fitted Values | |
nlme::fitted.lmList | Extract lmList Fitted Values | |
nlme::fitted.lme | Extract lme Fitted Values | |
nlme::fitted.lmeStruct | Calculate lmeStruct Fitted Values | |
nlme::fitted.nlmeStruct | Calculate nlmeStruct Fitted Values | |
nlme::fixed.effects | Extract Fixed Effects | |
nlme::fixed.effects.lmList | Extract lmList Fixed Effects | |
nlme::formula.pdBlocked | Extract pdBlocked Formula | |
nlme::formula.pdMat | Extract pdMat Formula | |
nlme::formula.reStruct | Extract reStruct Object Formula | |
nlme::getCovariate | Extract Covariate from an Object | |
nlme::getCovariate.corStruct | Extract corStruct Object Covariate | |
nlme::getCovariate.data.frame | Extract Data Frame Covariate | |
nlme::getCovariate.varFunc | Extract varFunc Covariate | |
nlme::getCovariateFormula | Extract Covariates Formula | |
nlme::getData | Extract Data from an Object | |
nlme::getData.gls | Extract gls Object Data | |
nlme::getData.lmList | Extract lmList Object Data | |
nlme::getData.lme | Extract lme Object Data | |
nlme::getGroups | Extract Grouping Factors from an Object | |
nlme::getGroups.corStruct | Extract corStruct Groups | |
nlme::getGroups.data.frame | Extract Groups from a Data Frame | |
nlme::getGroups.gls | Extract gls Object Groups | |
nlme::getGroups.lmList | Extract lmList Object Groups | |
nlme::getGroups.lme | Extract lme Object Groups | |
nlme::getGroups.varFunc | Extract varFunc Groups | |
nlme::getGroupsFormula | Extract Grouping Formula | |
nlme::getResponse | Extract Response Variable from an Object | |
nlme::getResponseFormula | Extract Formula Specifying Response Variable | |
nlme::getVarCov | Extract variance-covariance matrix | |
nlme::gls | Fit Linear Model Using Generalized Least Squares | |
nlme::glsControl | Control Values for gls Fit | |
nlme::glsObject | Fitted gls Object | |
nlme::glsStruct | Generalized Least Squares Structure | |
nlme::gnls | Fit Nonlinear Model Using Generalized Least Squares | |
nlme::gnlsControl | Control Values for gnls Fit | |
nlme::gnlsObject | Fitted gnls Object | |
nlme::gnlsStruct | Generalized Nonlinear Least Squares Structure | |
nlme::intervals | Confidence Intervals on Coefficients | |
nlme::intervals.gls | Confidence Intervals on gls Parameters | |
nlme::intervals.lmList | Confidence Intervals on lmList Coefficients | |
nlme::intervals.lme | Confidence Intervals on lme Parameters | |
nlme::isInitialized | Check if Object is Initialized | |
nlme::lmList | List of lm Objects with a Common Model | |
nlme::lmList.groupedData | lmList Fit from a groupedData Object | |
nlme::lme | Linear Mixed-Effects Models | |
nlme::lme.groupedData | LME fit from groupedData Object | |
nlme::lme.lmList | LME fit from lmList Object | |
nlme::lmeControl | Specifying Control Values for lme Fit | |
nlme::lmeObject | Fitted lme Object | |
nlme::lmeStruct | Linear Mixed-Effects Structure | |
nlme::logDet | Extract the Logarithm of the Determinant | |
nlme::logDet.corStruct | Extract corStruct Log-Determinant | |
nlme::logDet.pdMat | Extract Log-Determinant from a pdMat Object | |
nlme::logDet.reStruct | Extract reStruct Log-Determinants | |
nlme::logLik.corStruct | Extract corStruct Log-Likelihood | |
nlme::logLik.glsStruct | Log-Likelihood of a glsStruct Object | |
nlme::logLik.gnls | Log-Likelihood of a gnls Object | |
nlme::logLik.gnlsStruct | Log-Likelihood of a gnlsStruct Object | |
nlme::logLik.lmList | Log-Likelihood of an lmList Object | |
nlme::logLik.lme | Log-Likelihood of an lme Object | |
nlme::logLik.lmeStruct | Log-Likelihood of an lmeStruct Object | |
nlme::logLik.reStruct | Calculate reStruct Log-Likelihood | |
nlme::logLik.varFunc | Extract varFunc logLik | |
nlme::model.matrix.reStruct | reStruct Model Matrix | |
nlme::needUpdate | Check if Update is Needed | |
nlme::needUpdate.modelStruct | Check if a modelStruct Object Needs Updating | |
nlme::nlme | Nonlinear Mixed-Effects Models | |
nlme::nlme.nlsList | NLME fit from nlsList Object | |
nlme::nlmeControl | Control Values for nlme Fit | |
nlme::nlmeObject | Fitted nlme Object | |
nlme::nlmeStruct | Nonlinear Mixed-Effects Structure | |
nlme::nlsList | List of nls Objects with a Common Model | |
nlme::nlsList.selfStart | nlsList Fit from a selfStart Function | |
nlme::pairs.compareFits | Pairs Plot of compareFits Object | |
nlme::pairs.lmList | Pairs Plot of an lmList Object | |
nlme::pairs.lme | Pairs Plot of an lme Object | |
nlme::pdBlocked | Positive-Definite Block Diagonal Matrix | |
nlme::pdClasses | Positive-Definite Matrix Classes | |
nlme::pdCompSymm | Positive-Definite Matrix with Compound Symmetry Structure | |
nlme::pdConstruct | Construct pdMat Objects | |
nlme::pdConstruct.pdBlocked | Construct pdBlocked Objects | |
nlme::pdDiag | Diagonal Positive-Definite Matrix | |
nlme::pdFactor | Square-Root Factor of a Positive-Definite Matrix | |
nlme::pdFactor.reStruct | Extract Square-Root Factor from Components of an reStruct Object | |
nlme::pdIdent | Multiple of the Identity Positive-Definite Matrix | |
nlme::pdLogChol | General Positive-Definite Matrix | |
nlme::pdMat | Positive-Definite Matrix | |
nlme::pdMatrix | Extract Matrix or Square-Root Factor from a pdMat Object | |
nlme::pdMatrix.reStruct | Extract Matrix or Square-Root Factor from Components of an reStruct Object | |
nlme::pdNatural | General Positive-Definite Matrix in Natural Parametrization | |
nlme::pdSymm | General Positive-Definite Matrix | |
nlme::phenoModel | Model function for the Phenobarb data | |
nlme::plot.ACF | Plot an ACF Object | |
nlme::plot.Variogram | Plot a Variogram Object | |
nlme::plot.augPred | Plot an augPred Object | |
nlme::plot.compareFits | Plot a compareFits Object | |
nlme::plot.gls | Plot a gls Object | |
nlme::plot.intervals.lmList | Plot lmList Confidence Intervals | |
nlme::plot.lmList | Plot an lmList Object | |
nlme::plot.lme | Plot an lme or nls object | |
nlme::plot.nffGroupedData | Plot an nffGroupedData Object | |
nlme::plot.nfnGroupedData | Plot an nfnGroupedData Object | |
nlme::plot.nmGroupedData | Plot an nmGroupedData Object | |
nlme::plot.ranef.lmList | Plot a ranef.lmList Object | |
nlme::plot.ranef.lme | Plot a ranef.lme Object | |
nlme::pooledSD | Extract Pooled Standard Deviation | |
nlme::predict.gls | Predictions from a gls Object | |
nlme::predict.gnls | Predictions from a gnls Object | |
nlme::predict.lmList | Predictions from an lmList Object | |
nlme::predict.lme | Predictions from an lme Object | |
nlme::predict.nlme | Predictions from an nlme Object | |
nlme::print.summary.pdMat | Print a summary.pdMat Object | |
nlme::print.varFunc | Print a varFunc Object | |
nlme::qqnorm.gls | Normal Plot of Residuals from a gls Object | |
nlme::qqnorm.lm | Normal Plot of Residuals or Random Effects from an lme Object | |
nlme::quinModel | Model function for the Quinidine data | |
nlme::random.effects | Extract Random Effects | |
nlme::random.effects.lmList | Extract lmList Random Effects | |
nlme::ranef.lme | Extract lme Random Effects | |
nlme::reStruct | Random Effects Structure | |
nlme::recalc | Recalculate Condensed Linear Model Object | |
nlme::recalc.corStruct | Recalculate for corStruct Object | |
nlme::recalc.modelStruct | Recalculate for a modelStruct Object | |
nlme::recalc.reStruct | Recalculate for an reStruct Object | |
nlme::recalc.varFunc | Recalculate for varFunc Object | |
nlme::residuals.gls | Extract gls Residuals | |
nlme::residuals.glsStruct | Calculate glsStruct Residuals | |
nlme::residuals.gnlsStruct | Calculate gnlsStruct Residuals | |
nlme::residuals.lmList | Extract lmList Residuals | |
nlme::residuals.lme | Extract lme Residuals | |
nlme::residuals.lmeStruct | Calculate lmeStruct Residuals | |
nlme::residuals.nlmeStruct | Calculate nlmeStruct Residuals | |
nlme::simulate.lme | Simulate Results from 'lme' Models | |
nlme::solve.pdMat | Calculate Inverse of a Positive-Definite Matrix | |
nlme::solve.reStruct | Apply Solve to an reStruct Object | |
nlme::splitFormula | Split a Formula | |
nlme::summary.corStruct | Summarize a corStruct Object | |
nlme::summary.gls | Summarize a Generalized Least Squares 'gls' Object | |
nlme::summary.lmList | Summarize an lmList Object | |
nlme::summary.lme | Summarize an lme Object | |
nlme::summary.modelStruct | Summarize a modelStruct Object | |
nlme::summary.nlsList | Summarize an nlsList Object | |
nlme::summary.pdMat | Summarize a pdMat Object | |
nlme::summary.varFunc | Summarize "varFunc" Object | |
nlme::update.modelStruct | Update a modelStruct Object | |
nlme::update.varExp | Update varFunc Object | |
nlme::varClasses | Variance Function Classes | |
nlme::varComb | Combination of Variance Functions | |
nlme::varConstPower | Constant Plus Power Variance Function | |
nlme::varConstProp | Constant Plus Proportion Variance Function | |
nlme::varExp | Exponential Variance Function | |
nlme::varFixed | Fixed Variance Function | |
nlme::varFunc | Variance Function Structure | |
nlme::varIdent | Constant Variance Function | |
nlme::varPower | Power Variance Function | |
nlme::varWeights | Extract Variance Function Weights | |
nlme::varWeights.glsStruct | Variance Weights for glsStruct Object | |
nlme::varWeights.lmeStruct | Variance Weights for lmeStruct Object | |
nnet::multinom | Fit Multinomial Log-linear Models | |
splines::asVector | Coerce an Object to a Vector | |
splines::backSpline | Monotone Inverse Spline | |
splines::interpSpline | Create an Interpolation Spline | |
splines::periodicSpline | Create a Periodic Interpolation Spline | |
splines::polySpline | Piecewise Polynomial Spline Representation | |
splines::predict.bSpline | Evaluate a Spline at New Values of x | |
splines::splineDesign | Design Matrix for B-splines | |
splines::splineKnots | Knot Vector from a Spline | |
splines::splineOrder | Determine the Order of a Spline | |
splines::splines-package | Regression Spline Functions and Classes | |
splines::xyVector | Construct an 'xyVector' Object | |
stats::add1 | Add or Drop All Possible Single Terms to a Model | |
stats::AIC | Akaike's An Information Criterion | |
stats::alias | Find Aliases (Dependencies) in a Model | |
stats::anova.glm | Analysis of Deviance for Generalized Linear Model Fits | |
stats::anova.lm | ANOVA for Linear Model Fits | |
stats::anova.mlm | Comparisons between Multivariate Linear Models | |
stats::anova | Anova Tables | |
stats::aov | Fit an Analysis of Variance Model | |
stats::asOneSidedFormula | Convert to One-Sided Formula | |
stats::case.names | Case and Variable Names of Fitted Models | |
stats::coef | Extract Model Coefficients | |
stats::confint | Confidence Intervals for Model Parameters | |
stats::deviance | Model Deviance | |
stats::df.residual | Residual Degrees-of-Freedom | |
stats::dummy.coef | Extract Coefficients in Original Coding | |
stats::eff.aovlist | Compute Efficiencies of Multistratum Analysis of Variance | |
stats::effects | Effects from Fitted Model | |
stats::extractAIC | Extract AIC from a Fitted Model | |
stats::add.scope | Compute Allowed Changes in Adding to or Dropping from a Formula | |
stats::family | Family Objects for Models | |
stats::fitted.values | Extract Model Fitted Values | |
stats::formula.nls | Extract Model Formula from nls Object | |
stats::formula | Model Formulae | |
stats::getInitial | Get Initial Parameter Estimates | |
stats::glm.control | Auxiliary for Controlling GLM Fitting | |
stats::glm | Fitting Generalized Linear Models | |
stats::family.glm | Accessing Generalized Linear Model Fits | |
stats::is.empty.model | Test if a Model's Formula is Empty | |
stats::family.lm | Accessing Linear Model Fits | |
stats::logLik | Extract Log-Likelihood | |
stats::loglin | Fitting Log-Linear Models | |
stats::make.link | Create a Link for GLM Families | |
stats::makepredictcall | Utility Function for Safe Prediction | |
stats::manova | Multivariate Analysis of Variance | |
stats::mauchly.test | Mauchly's Test of Sphericity | |
stats::model.extract | Extract Components from a Model Frame | |
stats::model.frame | Extracting the Model Frame from a Formula or Fit | |
stats::model.matrix | Construct Design Matrices | |
stats::model.tables | Compute Tables of Results from an Aov Model Fit | |
stats::naresid | Adjust for Missing Values | |
stats::naprint | Adjust for Missing Values | |
stats::nls.control | Control the Iterations in nls | |
stats::nls | Nonlinear Least Squares | |
stats::nobs | Extract the Number of Observations from a Fit. | |
stats::numericDeriv | Evaluate Derivatives Numerically | |
stats::offset | Include an Offset in a Model Formula | |
stats::plot.profile.nls | Plot a profile.nls Object | |
stats::power | Create a Power Link Object | |
stats::predict.glm | Predict Method for GLM Fits | |
stats::predict.nls | Predicting from Nonlinear Least Squares Fits | |
stats::preplot | Pre-computations for a Plotting Object | |
stats::profile.nls | Method for Profiling nls Objects | |
stats::profile | Generic Function for Profiling Models | |
stats::proj | Projections of Models | |
stats::relevel | Reorder Levels of Factor | |
stats::replications | Number of Replications of Terms | |
stats::residuals | Extract Model Residuals | |
stats::se.contrast | Standard Errors for Contrasts in Model Terms | |
stats::selfStart | Construct Self-starting Nonlinear Models | |
stats::sigma | Extract Residual Standard Deviation 'Sigma' | |
stats::simulate | Simulate Responses | |
stats::SSasymp | Self-Starting Nls Asymptotic Regression Model | |
stats::SSasympOff | Self-Starting Nls Asymptotic Regression Model with an Offset | |
stats::SSasympOrig | Self-Starting Nls Asymptotic Regression Model through the Origin | |
stats::SSbiexp | Self-Starting Nls Biexponential model | |
stats::SSD | SSD Matrix and Estimated Variance Matrix in Multivariate Models | |
stats::SSfol | Self-Starting Nls First-order Compartment Model | |
stats::SSfpl | Self-Starting Nls Four-Parameter Logistic Model | |
stats::SSgompertz | Self-Starting Nls Gompertz Growth Model | |
stats::SSlogis | Self-Starting Nls Logistic Model | |
stats::SSmicmen | Self-Starting Nls Michaelis-Menten Model | |
stats::SSweibull | Self-Starting Nls Weibull Growth Curve Model | |
stats::stat.anova | GLM Anova Statistics | |
stats::step | Choose a model by AIC in a Stepwise Algorithm | |
stats::summary.aov | Summarize an Analysis of Variance Model | |
stats::summary.glm | Summarizing Generalized Linear Model Fits | |
stats::summary.lm | Summarizing Linear Model Fits | |
stats::summary.manova | Summary Method for Multivariate Analysis of Variance | |
stats::summary.nls | Summarizing Non-Linear Least-Squares Model Fits | |
stats::terms.formula | Construct a terms Object from a Formula | |
stats::terms.object | Description of Terms Objects | |
stats::terms | Model Terms | |
stats::TukeyHSD | Compute Tukey Honest Significant Differences | |
stats::update.formula | Model Updating | |
stats::update | Update and Re-fit a Model Call | |
stats::vcov | Calculate Variance-Covariance Matrix for a Fitted Model Object | |
stats::weights | Extract Model Weights | |
stats::C | Sets Contrasts for a Factor | |
stats4::mle | Maximum Likelihood Estimation | |
stats4::stats4-package | Statistical Functions using S4 Classes | |
survival::anova.coxph | Analysis of Deviance for a Cox model. | |
survival::attrassign.default | Create new-style "assign" attribute | |
survival::clogit | Conditional logistic regression | |
survival::yates | Population prediction | |
survival::yates_setup | Method for adding new models to the 'yates' function. |