e1071::bclust | Bagged Clustering | |
e1071::bootstrap.lca | Bootstrap Samples of LCA Results | |
e1071::countpattern | Count Binary Patterns | |
e1071::hamming.distance | Hamming Distances of Vectors | |
e1071::ica | Independent Component Analysis | |
e1071::interpolate | Interpolate Values of Array | |
e1071::lca | Latent Class Analysis (LCA) | |
mclust::MclustDA | MclustDA discriminant analysis | |
mclust::MclustDR | Dimension reduction for model-based clustering and classification | |
mclust::MclustDRsubsel | Subset selection for GMMDR directions based on BIC | |
mclust::covw | Weighted means, covariance and scattering matrices conditioning on a weighted matrix | |
mclust::crimcoords | Discriminant coordinates data projection | |
mclust::cvMclustDA | MclustDA cross-validation | |
mclust::logLik.Mclust | Log-Likelihood of a 'Mclust' object | |
mclust::logLik.MclustDA | Log-Likelihood of a 'MclustDA' object | |
mclust::plot.MclustDA | Plotting method for MclustDA discriminant analysis | |
mclust::plot.MclustDR | Plotting method for dimension reduction for model-based clustering and classification | |
mclust::plot.MclustSSC | Plotting method for MclustSSC semi-supervised classification | |
mclust::predict.Mclust | Cluster multivariate observations by Gaussian finite mixture modeling | |
mclust::predict.MclustDA | Classify multivariate observations by Gaussian finite mixture modeling | |
mclust::predict.MclustDR | Classify multivariate observations on a dimension reduced subspace by Gaussian finite mixture modeling | |
mclust::predict.densityMclust | Density estimate of multivariate observations by Gaussian finite mixture modeling | |
mclust::summary.MclustDA | Summarizing discriminant analysis based on Gaussian finite mixture modeling | |
mvtnorm::dmvnorm | Multivariate Normal Density and Random Deviates | |
mvtnorm::dmvt | The Multivariate t Distribution | |
numDeriv::genD | Generate Bates and Watts D Matrix | |
numDeriv::grad | Numerical Gradient of a Function | |
numDeriv::hessian | Calculate Hessian Matrix | |
numDeriv::jacobian | Gradient of a Vector Valued Function | |
s20x::summaryStats | Summary Statistics | |
survey::svyfactanal | Factor analysis in complex surveys (experimental). | |
survey::svyprcomp | Sampling-weighted principal component analysis | |
boot::corr | Correlation Coefficient | |
boot::cum3 | Calculate Third Order Cumulants | |
graphics::stars | Star (Spider/Radar) Plots and Segment Diagrams | |
graphics::symbols | Draw Symbols (Circles, Squares, Stars, Thermometers, Boxplots) | |
MASS::corresp | Simple Correspondence Analysis | |
MASS::cov.rob | Resistant Estimation of Multivariate Location and Scatter | |
MASS::cov.trob | Covariance Estimation for Multivariate t Distribution | |
MASS::isoMDS | Kruskal's Non-metric Multidimensional Scaling | |
MASS::lda | Linear Discriminant Analysis | |
MASS::mca | Multiple Correspondence Analysis | |
MASS::mvrnorm | Simulate from a Multivariate Normal Distribution | |
MASS::pairs.lda | Produce Pairwise Scatterplots from an 'lda' Fit | |
MASS::plot.lda | Plot Method for Class 'lda' | |
MASS::plot.mca | Plot Method for Objects of Class 'mca' | |
MASS::predict.lda | Classify Multivariate Observations by Linear Discrimination | |
MASS::predict.mca | Predict Method for Class 'mca' | |
MASS::predict.qda | Classify from Quadratic Discriminant Analysis | |
MASS::qda | Quadratic Discriminant Analysis | |
MASS::sammon | Sammon's Non-Linear Mapping | |
stats::anova.mlm | Comparisons between Multivariate Linear Models | |
stats::as.hclust | Convert Objects to Class hclust | |
stats::biplot.princomp | Biplot for Principal Components | |
stats::biplot | Biplot of Multivariate Data | |
stats::cancor | Canonical Correlations | |
stats::cmdscale | Classical (Metric) Multidimensional Scaling | |
stats::cophenetic | Cophenetic Distances for a Hierarchical Clustering | |
stats::var | Correlation, Variance and Covariance (Matrices) | |
stats::cov.wt | Weighted Covariance Matrices | |
stats::cutree | Cut a Tree into Groups of Data | |
stats::dendrogram | General Tree Structures | |
stats::dist | Distance Matrix Computation | |
stats::factanal | Factor Analysis | |
stats::hclust | Hierarchical Clustering | |
stats::kmeans | K-Means Clustering | |
stats::loadings | Print Loadings in Factor Analysis | |
stats::mahalanobis | Mahalanobis Distance | |
stats::mauchly.test | Mauchly's Test of Sphericity | |
stats::prcomp | Principal Components Analysis | |
stats::princomp | Principal Components Analysis | |
stats::rWishart | Random Wishart Distributed Matrices | |
stats::screeplot | Screeplots | |
stats::SSD | SSD Matrix and Estimated Variance Matrix in Multivariate Models | |
stats::summary.princomp | Summary method for Principal Components Analysis | |
stats::promax | Rotation Methods for Factor Analysis |