car::Anova | Anova Tables for Various Statistical Models | |
car::Boot | Bootstrapping for regression models | |
car::Contrasts | Functions to Construct Contrasts | |
car::S | Modified Functions for Summarizing Linear, Generalized Linear, and Some Other Models | |
car::avPlots | Added-Variable Plots | |
car::bcPower | Box-Cox, Box-Cox with Negatives Allowed, Yeo-Johnson and Basic Power Transformations | |
car::boxCox | Graph the profile log-likelihood for Box-Cox transformations in 1D, or in 2D with the bcnPower family. | |
car::boxCoxVariable | Constructed Variable for Box-Cox Transformation | |
car::boxTidwell | Box-Tidwell Transformations | |
car::car-deprecated | Deprecated Functions in the car Package | |
car::ceresPlots | Ceres Plots | |
car::crPlots.default | Component+Residual (Partial Residual) Plots | |
car::deltaMethod | Estimate and Standard Error of a Nonlinear Function of Estimated Regression Coefficients | |
car::dfbetaPlots | dfbeta and dfbetas Index Plots | |
car::durbinWatsonTest | Durbin-Watson Test for Autocorrelated Errors | |
car::hccm | Heteroscedasticity-Corrected Covariance Matrices | |
car::hist.boot | Methods Functions to Support 'boot' Objects | |
car::infIndexPlot | Influence Index Plot | |
car::influencePlot | Regression Influence Plot | |
car::invResPlot | Inverse Response Plots to Transform the Response | |
car::invTranPlot | Choose a Predictor Transformation Visually or Numerically | |
car::leveragePlots | Regression Leverage Plots | |
car::linearHypothesis | Test Linear Hypothesis | |
car::mmps | Marginal Model Plotting | |
car::mcPlots | Draw Linear Model Marginal and Conditional Plots in Parallel or Overlaid | |
car::ncvTest | Score Test for Non-Constant Error Variance | |
car::outlierTest | Bonferroni Outlier Test | |
car::powerTransform | Finding Univariate or Multivariate Power Transformations | |
car::qqPlot | Quantile-Comparison Plot | |
car::residualPlots | Residual Plots for Linear and Generalized Linear Models | |
car::sigmaHat | Return the scale estimate for a regression model | |
car::spreadLevelPlot | Spread-Level Plots | |
car::subsets | Plot Output from regsubsets Function in leaps package | |
car::testTransform | Likelihood-Ratio Tests for Univariate or Multivariate Power Transformations to Normality | |
car::vif | Variance Inflation Factors | |
estimability::epredict | Estimability Enhancements for 'lm' and Relatives | |
estimability::estble.subspace | Find an estimable subspace | |
estimability::estimability-package | Estimability Tools for Linear Models | |
estimability::nonest.basis | Estimability Tools | |
FNN::knn.reg | k Nearest Neighbor Regression | |
MatrixModels::glm4 | Fitting Generalized Linear Models (using S4) | |
MatrixModels::lm.fit.sparse | Fitter Function for Sparse Linear Models | |
MatrixModels::reweightPred | Reweight Prediction Module Structure Internals | |
MatrixModels::solveCoef | Solve for the Coefficients or Coefficient Increment | |
MatrixModels::updateMu | Update 'mu', the Fitted Mean Response | |
MatrixModels::updateWts | Update the Residual and X Weights - Generic and Methods | |
quantreg::anova.rq | Anova function for quantile regression fits | |
quantreg::bandwidth.rq | bandwidth selection for rq functions | |
quantreg::boot.crq | Bootstrapping Censored Quantile Regression | |
quantreg::boot.rq | Bootstrapping Quantile Regression | |
quantreg::critval | Hotelling Critical Values | |
quantreg::crq | Functions to fit censored quantile regression models | |
quantreg::dynrq | Dynamic Linear Quantile Regression | |
quantreg::nlrq | Function to compute nonlinear quantile regression estimates | |
quantreg::plot.KhmaladzeTest | Plot a KhmaladzeTest object | |
quantreg::plot.rqss | Plot Method for rqss Objects | |
quantreg::predict.rq | Quantile Regression Prediction | |
quantreg::predict.rqss | Predict from fitted nonparametric quantile regression smoothing spline models | |
quantreg::print.KhmaladzeTest | Print a KhmaladzeTest object | |
quantreg::print.rq | Print an rq object | |
quantreg::print.summary.rq | Print Quantile Regression Summary Object | |
quantreg::qrisk | Function to compute Choquet portfolio weights | |
quantreg::ranks | Quantile Regression Ranks | |
quantreg::rearrange | Rearrangement | |
quantreg::residuals.nlrq | Return residuals of an nlrq object | |
quantreg::rq | Quantile Regression | |
quantreg::rq.fit | Function to choose method for Quantile Regression | |
quantreg::rq.fit.br | Quantile Regression Fitting by Exterior Point Methods | |
quantreg::rq.fit.conquer | Optional Fitting Method for Quantile Regression | |
quantreg::rq.fit.fnb | Quantile Regression Fitting via Interior Point Methods | |
quantreg::rq.fit.fnc | Quantile Regression Fitting via Interior Point Methods | |
quantreg::rq.fit.hogg | weighted quantile regression fitting | |
quantreg::rq.fit.lasso | Lasso Penalized Quantile Regression | |
quantreg::rq.fit.pfn | Preprocessing Algorithm for Quantile Regression | |
quantreg::rq.fit.pfnb | Quantile Regression Fitting via Interior Point Methods | |
quantreg::rq.fit.ppro | Preprocessing fitting method for QR | |
quantreg::rq.fit.qfnb | Quantile Regression Fitting via Interior Point Methods | |
quantreg::rq.fit.scad | SCADPenalized Quantile Regression | |
quantreg::rq.fit.sfn | Sparse Regression Quantile Fitting | |
quantreg::rq.fit.sfnc | Sparse Constrained Regression Quantile Fitting | |
quantreg::rq.object | Linear Quantile Regression Object | |
quantreg::rq.process.object | Linear Quantile Regression Process Object | |
quantreg::rq.wfit | Function to choose method for Weighted Quantile Regression | |
quantreg::rqProcess | Compute Standardized Quantile Regression Process | |
quantreg::rqs.fit | Function to fit multiple response quantile regression models | |
quantreg::rqss | Additive Quantile Regression Smoothing | |
quantreg::rqss.object | RQSS Objects and Summarization Thereof | |
quantreg::srisk | Markowitz (Mean-Variance) Portfolio Optimization | |
quantreg::summary.crqs | Summary methods for Censored Quantile Regression | |
quantreg::summary.rq | Summary methods for Quantile Regression | |
quantreg::summary.rqss | Summary of rqss fit | |
quantreg::table.rq | Table of Quantile Regression Results | |
RcppEigen::fastLm | Bare-bones linear model fitting function | |
sandwich::bwNeweyWest | Newey-West HAC Covariance Matrix Estimation | |
sandwich::bread | Bread for Sandwiches | |
sandwich::estfun | Extract Empirical Estimating Functions | |
sandwich::isoacf | Isotonic Autocorrelation Function | |
sandwich::kweights | Kernel Weights | |
sandwich::lrvar | Long-Run Variance of the Mean | |
sandwich::meat | A Simple Meat Matrix Estimator | |
sandwich::sandwich | Making Sandwiches with Bread and Meat | |
sandwich::vcovBS | (Clustered) Bootstrap Covariance Matrix Estimation | |
sandwich::vcovCL | Clustered Covariance Matrix Estimation | |
sandwich::vcovHAC | Heteroscedasticity and Autocorrelation Consistent (HAC) Covariance Matrix Estimation | |
sandwich::vcovHC | Heteroscedasticity-Consistent Covariance Matrix Estimation | |
sandwich::vcovOPG | Outer-Product-of-Gradients Covariance Matrix Estimation | |
sandwich::vcovPC | Panel-Corrected Covariance Matrix Estimation | |
sandwich::vcovPL | Clustered Covariance Matrix Estimation for Panel Data | |
sandwich::weightsAndrews | Kernel-based HAC Covariance Matrix Estimation | |
sandwich::weightsLumley | Weighted Empirical Adaptive Variance Estimation | |
SparseM::slm | Fit a linear regression model using sparse matrix algebra | |
SparseM::slm.fit | Internal slm fitting functions | |
SparseM::slm.methods | Methods for slm objects | |
survey::anova.svyglm | Model comparison for glms. | |
survey::psrsq | Pseudo-Rsquareds | |
survey::regTermTest | Wald test for a term in a regression model | |
survey::svy.varcoef | Sandwich variance estimator for glms | |
survey::svycoxph | Survey-weighted Cox models. | |
survey::svyglm | Survey-weighted generalised linear models. | |
survey::svypredmeans | Predictive marginal means | |
boot::cv.glm | Cross-validation for Generalized Linear Models | |
boot::glm.diag | Generalized Linear Model Diagnostics | |
boot::glm.diag.plots | Diagnostics plots for generalized linear models | |
KernSmooth::locpoly | Estimate Functions Using Local Polynomials | |
MASS::anova.negbin | Likelihood Ratio Tests for Negative Binomial GLMs | |
MASS::boxcox | Box-Cox Transformations for Linear Models | |
MASS::dose.p | Predict Doses for Binomial Assay model | |
MASS::glm.convert | Change a Negative Binomial fit to a GLM fit | |
MASS::glm.nb | Fit a Negative Binomial Generalized Linear Model | |
MASS::logtrans | Estimate log Transformation Parameter | |
MASS::negative.binomial | Family function for Negative Binomial GLMs | |
MASS::profile.glm | Method for Profiling glm Objects | |
mgcv::betar | GAM beta regression family | |
mgcv::FFdes | Level 5 fractional factorial designs | |
mgcv::Predict.matrix | Prediction methods for smooth terms in a GAM | |
mgcv::Predict.matrix.cr.smooth | Predict matrix method functions | |
mgcv::Predict.matrix.soap.film | Prediction matrix for soap film smooth | |
mgcv::Rrank | Find rank of upper triangular matrix | |
mgcv::Tweedie | GAM Tweedie families | |
mgcv::XWXd | Internal functions for discretized model matrix handling | |
mgcv::anova.gam | Approximate hypothesis tests related to GAM fits | |
mgcv::bam | Generalized additive models for very large datasets | |
mgcv::bam.update | Update a strictly additive bam model for new data. | |
mgcv::bandchol | Choleski decomposition of a band diagonal matrix | |
mgcv::blas.thread.test | BLAS thread safety | |
mgcv::cSplineDes | Evaluate cyclic B spline basis | |
mgcv::choldrop | Deletion and rank one Cholesky factor update | |
mgcv::choose.k | Basis dimension choice for smooths | |
mgcv::cnorm | GAM censored normal family for log-normal AFT and Tobit models | |
mgcv::cox.ph | Additive Cox Proportional Hazard Model | |
mgcv::cox.pht | Additive Cox proportional hazard models with time varying covariates | |
mgcv::dpnorm | Stable evaluation of difference between normal c.d.f.s | |
mgcv::extract.lme.cov | Extract the data covariance matrix from an lme object | |
mgcv::factor.smooth.interaction | Factor smooth interactions in GAMs | |
mgcv::family.mgcv | Distribution families in mgcv | |
mgcv::fix.family.link | Modify families for use in GAM fitting and checking | |
mgcv::fixDependence | Detect linear dependencies of one matrix on another | |
mgcv::formXtViX | Form component of GAMM covariance matrix | |
mgcv::formula.gam | GAM formula | |
mgcv::fs.test | FELSPLINE test function | |
mgcv::full.score | GCV/UBRE score for use within nlm | |
mgcv::gam | Generalized additive models with integrated smoothness estimation | |
mgcv::gam.check | Some diagnostics for a fitted gam model | |
mgcv::gam.control | Setting GAM fitting defaults | |
mgcv::gam.convergence | GAM convergence and performance issues | |
mgcv::gam.fit | GAM P-IRLS estimation with GCV/UBRE smoothness estimation | |
mgcv::gam.fit3 | P-IRLS GAM estimation with GCV, UBRE/AIC or RE/ML derivative calculation | |
mgcv::gam.mh | Simple posterior simulation with gam fits | |
mgcv::gam.models | Specifying generalized additive models | |
mgcv::gam.outer | Minimize GCV or UBRE score of a GAM using 'outer' iteration | |
mgcv::gam.scale | Scale parameter estimation in GAMs | |
mgcv::gam.selection | Generalized Additive Model Selection | |
mgcv::gam.side | Identifiability side conditions for a GAM | |
mgcv::gam.vcomp | Report gam smoothness estimates as variance components | |
mgcv::gam2objective | Objective functions for GAM smoothing parameter estimation | |
mgcv::gamObject | Fitted gam object | |
mgcv::gamSim | Simulate example data for GAMs | |
mgcv::gamm | Generalized Additive Mixed Models | |
mgcv::gammals | Gamma location-scale model family | |
mgcv::gaulss | Gaussian location-scale model family | |
mgcv::get.var | Get named variable or evaluate expression from list or data.frame | |
mgcv::gevlss | Generalized Extreme Value location-scale model family | |
mgcv::ginla | GAM Integrated Nested Laplace Approximation Newton Enhanced | |
mgcv::gumbls | Gumbel location-scale model family | |
mgcv::identifiability | Identifiability constraints | |
mgcv::inSide | Are points inside boundary? | |
mgcv::influence.gam | Extract the diagonal of the influence/hat matrix for a GAM | |
mgcv::initial.sp | Starting values for multiple smoothing parameter estimation | |
mgcv::interpret.gam | Interpret a GAM formula | |
mgcv::jagam | Just Another Gibbs Additive Modeller: JAGS support for mgcv. | |
mgcv::k.check | Checking smooth basis dimension | |
mgcv::ldTweedie | Log Tweedie density evaluation | |
mgcv::linear.functional.terms | Linear functionals of a smooth in GAMs | |
mgcv::logLik.gam | AIC and Log likelihood for a fitted GAM | |
mgcv::magic | Stable Multiple Smoothing Parameter Estimation by GCV or UBRE | |
mgcv::magic.post.proc | Auxilliary information from magic fit | |
mgcv::mgcv.FAQ | Frequently Asked Questions for package mgcv | |
mgcv::mgcv.package | Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL | |
mgcv::mgcv.parallel | Parallel computation in mgcv. | |
mgcv::missing.data | Missing data in GAMs | |
mgcv::model.matrix.gam | Extract model matrix from GAM fit | |
mgcv::mono.con | Monotonicity constraints for a cubic regression spline | |
mgcv::mroot | Smallest square root of matrix | |
mgcv::multinom | GAM multinomial logistic regression | |
mgcv::mvn | Multivariate normal additive models | |
mgcv::negbin | GAM negative binomial families | |
mgcv::new.name | Obtain a name for a new variable that is not already in use | |
mgcv::notExp | Functions for better-than-log positive parameterization | |
mgcv::notExp2 | Alternative to log parameterization for variance components | |
mgcv::null.space.dimension | The basis of the space of un-penalized functions for a TPRS | |
mgcv::ocat | GAM ordered categorical family | |
mgcv::one.se.rule | The one standard error rule for smoother models | |
mgcv::pcls | Penalized Constrained Least Squares Fitting | |
mgcv::pdIdnot | Overflow proof pdMat class for multiples of the identity matrix | |
mgcv::pdTens | Functions implementing a pdMat class for tensor product smooths | |
mgcv::pen.edf | Extract the effective degrees of freedom associated with each penalty in a gam fit | |
mgcv::place.knots | Automatically place a set of knots evenly through covariate values | |
mgcv::plot.gam | Default GAM plotting | |
mgcv::polys.plot | Plot geographic regions defined as polygons | |
mgcv::predict.bam | Prediction from fitted Big Additive Model model | |
mgcv::predict.gam | Prediction from fitted GAM model | |
mgcv::print.gam | Print a Generalized Additive Model object. | |
mgcv::psum.chisq | Evaluate the c.d.f. of a weighted sum of chi-squared deviates | |
mgcv::qq.gam | QQ plots for gam model residuals | |
mgcv::rTweedie | Generate Tweedie random deviates | |
mgcv::random.effects | Random effects in GAMs | |
mgcv::residuals.gam | Generalized Additive Model residuals | |
mgcv::rmvn | Generate from or evaluate multivariate normal or t densities. | |
mgcv::s | Defining smooths in GAM formulae | |
mgcv::scat | GAM scaled t family for heavy tailed data | |
mgcv::sdiag | Extract or modify diagonals of a matrix | |
mgcv::single.index | Single index models with mgcv | |
mgcv::slanczos | Compute truncated eigen decomposition of a symmetric matrix | |
mgcv::smooth.construct | Constructor functions for smooth terms in a GAM | |
mgcv::smooth.construct.ad.smooth.spec | Adaptive smooths in GAMs | |
mgcv::smooth.construct.bs.smooth.spec | Penalized B-splines in GAMs | |
mgcv::smooth.construct.cr.smooth.spec | Penalized Cubic regression splines in GAMs | |
mgcv::smooth.construct.ds.smooth.spec | Low rank Duchon 1977 splines | |
mgcv::smooth.construct.fs.smooth.spec | Factor smooth interactions in GAMs | |
mgcv::smooth.construct.gp.smooth.spec | Low rank Gaussian process smooths | |
mgcv::smooth.construct.mrf.smooth.spec | Markov Random Field Smooths | |
mgcv::smooth.construct.ps.smooth.spec | P-splines in GAMs | |
mgcv::smooth.construct.re.smooth.spec | Simple random effects in GAMs | |
mgcv::smooth.construct.so.smooth.spec | Soap film smoother constructer | |
mgcv::smooth.construct.sos.smooth.spec | Splines on the sphere | |
mgcv::smooth.construct.sz.smooth.spec | Constrained factor smooth interactions in GAMs | |
mgcv::smooth.construct.t2.smooth.spec | Tensor product smoothing constructor | |
mgcv::smooth.construct.tensor.smooth.spec | Tensor product smoothing constructor | |
mgcv::smooth.construct.tp.smooth.spec | Penalized thin plate regression splines in GAMs | |
mgcv::smooth.info | Generic function to provide extra information about smooth specification | |
mgcv::smooth.terms | Smooth terms in GAM | |
mgcv::smooth2random | Convert a smooth to a form suitable for estimating as random effect | |
mgcv::smoothCon | Prediction/Construction wrapper functions for GAM smooth terms | |
mgcv::sp.vcov | Extract smoothing parameter estimator covariance matrix from (RE)ML GAM fit | |
mgcv::spasm.construct | Experimental sparse smoothers | |
mgcv::step.gam | Alternatives to step.gam | |
mgcv::summary.gam | Summary for a GAM fit | |
mgcv::t2 | Define alternative tensor product smooths in GAM formulae | |
mgcv::te | Define tensor product smooths or tensor product interactions in GAM formulae | |
mgcv::tensor.prod.model.matrix | Row Kronecker product/ tensor product smooth construction | |
mgcv::trichol | Choleski decomposition of a tri-diagonal matrix | |
mgcv::twlss | Tweedie location scale family | |
mgcv::uniquecombs | find the unique rows in a matrix | |
mgcv::vcov.gam | Extract parameter (estimator) covariance matrix from GAM fit | |
mgcv::vis.gam | Visualization of GAM objects | |
mgcv::ziP | GAM zero-inflated (hurdle) Poisson regression family | |
mgcv::ziplss | Zero inflated (hurdle) Poisson location-scale model family | |
stats::anova.glm | Analysis of Deviance for Generalized Linear Model Fits | |
stats::anova.lm | ANOVA for Linear Model Fits | |
stats::anova.mlm | Comparisons between Multivariate Linear Models | |
stats::anova | Anova Tables | |
stats::aov | Fit an Analysis of Variance Model | |
stats::case.names | Case and Variable Names of Fitted Models | |
stats::coef | Extract Model Coefficients | |
stats::contr.helmert | (Possibly Sparse) Contrast Matrices | |
stats::contrasts | Get and Set Contrast Matrices | |
stats::df.residual | Residual Degrees-of-Freedom | |
stats::effects | Effects from Fitted Model | |
stats::expand.model.frame | Add new variables to a model frame | |
stats::fitted.values | Extract Model Fitted Values | |
stats::glm | Fitting Generalized Linear Models | |
stats::family.glm | Accessing Generalized Linear Model Fits | |
stats::influence.measures | Regression Deletion Diagnostics | |
stats::isoreg | Isotonic / Monotone Regression | |
stats::line | Robust Line Fitting | |
stats::lm.influence | Regression Diagnostics | |
stats::lm | Fitting Linear Models | |
stats::family.lm | Accessing Linear Model Fits | |
stats::lm.fit | Fitter Functions for Linear Models | |
stats::ls.diag | Compute Diagnostics for 'lsfit' Regression Results | |
stats::ls.print | Print 'lsfit' Regression Results | |
stats::lsfit | Find the Least Squares Fit | |
stats::nls.control | Control the Iterations in nls | |
stats::nls | Nonlinear Least Squares | |
stats::plot.lm | Plot Diagnostics for an 'lm' Object | |
stats::plot.profile.nls | Plot a profile.nls Object | |
stats::ppr | Projection Pursuit Regression | |
stats::predict.glm | Predict Method for GLM Fits | |
stats::predict.lm | Predict method for Linear Model Fits | |
stats::predict.nls | Predicting from Nonlinear Least Squares Fits | |
stats::profile.nls | Method for Profiling nls Objects | |
stats::residuals | Extract Model Residuals | |
stats::stat.anova | GLM Anova Statistics | |
stats::summary.aov | Summarize an Analysis of Variance Model | |
stats::summary.glm | Summarizing Generalized Linear Model Fits | |
stats::summary.lm | Summarizing Linear Model Fits | |
stats::summary.nls | Summarizing Non-Linear Least-Squares Model Fits | |
stats::termplot | Plot Regression Terms | |
stats::weighted.residuals | Compute Weighted Residuals | |
survival::anova.coxph | Analysis of Deviance for a Cox model. | |
survival::survreg.object | Parametric Survival Model Object |