quantreg::akj | Density Estimation using Adaptive Kernel method | |
quantreg::lprq | locally polynomial quantile regression | |
quantreg::plot.rqss | Plot Method for rqss Objects | |
quantreg::predict.rqss | Predict from fitted nonparametric quantile regression smoothing spline models | |
quantreg::qss | Additive Nonparametric Terms for rqss Fitting | |
quantreg::rqss | Additive Quantile Regression Smoothing | |
quantreg::rqss.object | RQSS Objects and Summarization Thereof | |
quantreg::summary.rqss | Summary of rqss fit | |
boot::exp.tilt | Exponential Tilting | |
boot::lines.saddle.distn | Add a Saddlepoint Approximation to a Plot | |
boot::print.saddle.distn | Print Quantiles of Saddlepoint Approximations | |
boot::saddle | Saddlepoint Approximations for Bootstrap Statistics | |
boot::saddle.distn | Saddlepoint Distribution Approximations for Bootstrap Statistics | |
boot::saddle.distn.object | Saddlepoint Distribution Approximation Objects | |
boot::smooth.f | Smooth Distributions on Data Points | |
graphics::sunflowerplot | Produce a Sunflower Scatter Plot | |
KernSmooth::bkde | Compute a Binned Kernel Density Estimate | |
KernSmooth::bkde2D | Compute a 2D Binned Kernel Density Estimate | |
KernSmooth::bkfe | Compute a Binned Kernel Functional Estimate | |
KernSmooth::dpih | Select a Histogram Bin Width | |
KernSmooth::dpik | Select a Bandwidth for Kernel Density Estimation | |
KernSmooth::dpill | Select a Bandwidth for Local Linear Regression | |
KernSmooth::locpoly | Estimate Functions Using Local Polynomials | |
mgcv::FFdes | Level 5 fractional factorial designs | |
mgcv::Predict.matrix | Prediction methods for smooth terms in a GAM | |
mgcv::Predict.matrix.soap.film | Prediction matrix for soap film smooth | |
mgcv::Rrank | Find rank of upper triangular matrix | |
mgcv::XWXd | Internal functions for discretized model matrix handling | |
mgcv::anova.gam | Approximate hypothesis tests related to GAM fits | |
mgcv::bam | Generalized additive models for very large datasets | |
mgcv::bam.update | Update a strictly additive bam model for new data. | |
mgcv::bandchol | Choleski decomposition of a band diagonal matrix | |
mgcv::blas.thread.test | BLAS thread safety | |
mgcv::cSplineDes | Evaluate cyclic B spline basis | |
mgcv::choldrop | Deletion and rank one Cholesky factor update | |
mgcv::dpnorm | Stable evaluation of difference between normal c.d.f.s | |
mgcv::extract.lme.cov | Extract the data covariance matrix from an lme object | |
mgcv::formXtViX | Form component of GAMM covariance matrix | |
mgcv::formula.gam | GAM formula | |
mgcv::fs.test | FELSPLINE test function | |
mgcv::full.score | GCV/UBRE score for use within nlm | |
mgcv::gam | Generalized additive models with integrated smoothness estimation | |
mgcv::gam.check | Some diagnostics for a fitted gam model | |
mgcv::gam.control | Setting GAM fitting defaults | |
mgcv::gam.convergence | GAM convergence and performance issues | |
mgcv::gam.fit | GAM P-IRLS estimation with GCV/UBRE smoothness estimation | |
mgcv::gam.fit3 | P-IRLS GAM estimation with GCV, UBRE/AIC or RE/ML derivative calculation | |
mgcv::gam.mh | Simple posterior simulation with gam fits | |
mgcv::gam.outer | Minimize GCV or UBRE score of a GAM using 'outer' iteration | |
mgcv::gam.scale | Scale parameter estimation in GAMs | |
mgcv::gam.vcomp | Report gam smoothness estimates as variance components | |
mgcv::gam2objective | Objective functions for GAM smoothing parameter estimation | |
mgcv::gamObject | Fitted gam object | |
mgcv::gamSim | Simulate example data for GAMs | |
mgcv::gamm | Generalized Additive Mixed Models | |
mgcv::get.var | Get named variable or evaluate expression from list or data.frame | |
mgcv::ginla | GAM Integrated Nested Laplace Approximation Newton Enhanced | |
mgcv::inSide | Are points inside boundary? | |
mgcv::influence.gam | Extract the diagonal of the influence/hat matrix for a GAM | |
mgcv::initial.sp | Starting values for multiple smoothing parameter estimation | |
mgcv::interpret.gam | Interpret a GAM formula | |
mgcv::jagam | Just Another Gibbs Additive Modeller: JAGS support for mgcv. | |
mgcv::k.check | Checking smooth basis dimension | |
mgcv::logLik.gam | AIC and Log likelihood for a fitted GAM | |
mgcv::magic | Stable Multiple Smoothing Parameter Estimation by GCV or UBRE | |
mgcv::magic.post.proc | Auxilliary information from magic fit | |
mgcv::mgcv.package | Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL | |
mgcv::mgcv.parallel | Parallel computation in mgcv. | |
mgcv::model.matrix.gam | Extract model matrix from GAM fit | |
mgcv::mono.con | Monotonicity constraints for a cubic regression spline | |
mgcv::mroot | Smallest square root of matrix | |
mgcv::new.name | Obtain a name for a new variable that is not already in use | |
mgcv::notExp | Functions for better-than-log positive parameterization | |
mgcv::notExp2 | Alternative to log parameterization for variance components | |
mgcv::one.se.rule | The one standard error rule for smoother models | |
mgcv::pcls | Penalized Constrained Least Squares Fitting | |
mgcv::pdIdnot | Overflow proof pdMat class for multiples of the identity matrix | |
mgcv::pdTens | Functions implementing a pdMat class for tensor product smooths | |
mgcv::pen.edf | Extract the effective degrees of freedom associated with each penalty in a gam fit | |
mgcv::place.knots | Automatically place a set of knots evenly through covariate values | |
mgcv::plot.gam | Default GAM plotting | |
mgcv::polys.plot | Plot geographic regions defined as polygons | |
mgcv::predict.bam | Prediction from fitted Big Additive Model model | |
mgcv::predict.gam | Prediction from fitted GAM model | |
mgcv::print.gam | Print a Generalized Additive Model object. | |
mgcv::psum.chisq | Evaluate the c.d.f. of a weighted sum of chi-squared deviates | |
mgcv::qq.gam | QQ plots for gam model residuals | |
mgcv::residuals.gam | Generalized Additive Model residuals | |
mgcv::s | Defining smooths in GAM formulae | |
mgcv::sdiag | Extract or modify diagonals of a matrix | |
mgcv::slanczos | Compute truncated eigen decomposition of a symmetric matrix | |
mgcv::smooth.construct | Constructor functions for smooth terms in a GAM | |
mgcv::smooth.construct.so.smooth.spec | Soap film smoother constructer | |
mgcv::smooth.info | Generic function to provide extra information about smooth specification | |
mgcv::smooth2random | Convert a smooth to a form suitable for estimating as random effect | |
mgcv::smoothCon | Prediction/Construction wrapper functions for GAM smooth terms | |
mgcv::sp.vcov | Extract smoothing parameter estimator covariance matrix from (RE)ML GAM fit | |
mgcv::spasm.construct | Experimental sparse smoothers | |
mgcv::summary.gam | Summary for a GAM fit | |
mgcv::t2 | Define alternative tensor product smooths in GAM formulae | |
mgcv::te | Define tensor product smooths or tensor product interactions in GAM formulae | |
mgcv::tensor.prod.model.matrix | Row Kronecker product/ tensor product smooth construction | |
mgcv::trichol | Choleski decomposition of a tri-diagonal matrix | |
mgcv::vcov.gam | Extract parameter (estimator) covariance matrix from GAM fit | |
mgcv::vis.gam | Visualization of GAM objects | |
splines::bs | B-Spline Basis for Polynomial Splines | |
splines::ns | Generate a Basis Matrix for Natural Cubic Splines | |
splines::predict.bs | Evaluate a Spline Basis | |
stats::bw.nrd0 | Bandwidth Selectors for Kernel Density Estimation | |
stats::density | Kernel Density Estimation | |
stats::isoreg | Isotonic / Monotone Regression | |
stats::ksmooth | Kernel Regression Smoother | |
stats::loess.control | Set Parameters for Loess | |
stats::loess | Local Polynomial Regression Fitting | |
stats::lowess | Scatter Plot Smoothing | |
stats::predict.loess | Predict Loess Curve or Surface | |
stats::predict.smooth.spline | Predict from Smoothing Spline Fit | |
stats::runmed | Running Medians - Robust Scatter Plot Smoothing | |
stats::scatter.smooth | Scatter Plot with Smooth Curve Fitted by Loess | |
stats::smooth | Tukey's (Running Median) Smoothing | |
stats::smooth.spline | Fit a Smoothing Spline | |
stats::smoothEnds | End Points Smoothing (for Running Medians) | |
stats::supsmu | Friedman's SuperSmoother | |
survival::nsk | Natural splines with knot heights as the basis. |