Examples for 'FNN::knn.cv'


k-Nearest Neighbour Classification Cross-Validation

Aliases: knn.cv

Keywords: classif nonparametric

### ** Examples

  data(iris3)
  train <- rbind(iris3[,,1], iris3[,,2], iris3[,,3])
  cl <- factor(c(rep("s",50), rep("c",50), rep("v",50)))
  knn.cv(train, cl, k = 3, prob = TRUE)
  [1] s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s
 [38] s s s s s s s s s s s s s c c c c c c c c c c c c c c c c c c c c v c v c
 [75] c c c c c c c c c v c c c c c c c c c c c c c c c c v v v v v v c v v v v
[112] v v v v v v v v c v v v v v v v v v v v v v c v v v v v v v v v v v v v v
[149] v v
attr(,"prob")
  [1] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
  [8] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
 [15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
 [22] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
 [29] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
 [36] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
 [43] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
 [50] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
 [57] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
 [64] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.6666667 1.0000000
 [71] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
 [78] 0.6666667 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
 [85] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
 [92] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
 [99] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[106] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.6666667 1.0000000
[113] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[120] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[127] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[134] 0.6666667 0.6666667 1.0000000 1.0000000 1.0000000 0.6666667 1.0000000
[141] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[148] 1.0000000 1.0000000 1.0000000
attr(,"nn.index")
       [,1] [,2] [,3]
  [1,]   18    5   40
  [2,]   35   46   13
  [3,]   48    4    7
  [4,]   48   30   31
  [5,]   38    1   18
  [6,]   19   11   49
  [7,]   48    3   12
  [8,]   40   50    1
  [9,]   39    4   43
 [10,]   35    2   31
 [11,]   49   28   37
 [12,]   30    8   27
 [13,]    2   10   46
 [14,]   39   43    9
 [15,]   34   17   16
 [16,]   34   15    6
 [17,]   11   49   34
 [18,]    1   41    5
 [19,]    6   11   49
 [20,]   22   47   49
 [21,]   32   28   29
 [22,]   20   47   18
 [23,]    7    3   38
 [24,]   27   44   40
 [25,]   12   30   27
 [26,]   35   10    2
 [27,]   24   44    8
 [28,]   29    1   40
 [29,]   28   40    1
 [30,]   31    4   12
 [31,]   30   35   10
 [32,]   21   28   29
 [33,]   34   47   20
 [34,]   33   16   17
 [35,]   10    2   31
 [36,]   50    2    3
 [37,]   11   32   29
 [38,]    5    1   41
 [39,]    9   43   14
 [40,]    8    1   28
 [41,]   18    1    5
 [42,]    9   39   46
 [43,]   39   48    4
 [44,]   27   24   22
 [45,]   47    6   22
 [46,]    2   13   35
 [47,]   20   22   49
 [48,]    4    3   43
 [49,]   11   28   20
 [50,]    8   40   36
 [51,]   53   87   66
 [52,]   57   76   66
 [53,]   51   87   78
 [54,]   90   81   70
 [55,]   59   76   77
 [56,]   67   91   97
 [57,]   52   86   92
 [58,]   94   99   61
 [59,]   76   55   66
 [60,]   90   95   54
 [61,]   94   58   82
 [62,]   97   79   96
 [63,]   93   70   68
 [64,]   92   74   79
 [65,]   83   80   89
 [66,]   76   59   87
 [67,]   85   56   97
 [68,]   93   83  100
 [69,]   88   73  120
 [70,]   81   90   82
 [71,]  139  128  150
 [72,]   98   83   93
 [73,]  134  124  147
 [74,]   64   92   79
 [75,]   98   76   59
 [76,]   66   59   75
 [77,]   59   87   53
 [78,]   53   87  148
 [79,]   92   64   62
 [80,]   82   81   70
 [81,]   82   70   90
 [82,]   81   70   80
 [83,]   93  100   68
 [84,]  134  102  143
 [85,]   67   56   97
 [86,]   57   71   52
 [87,]   53   66   59
 [88,]   69   73   63
 [89,]   96   97  100
 [90,]   54   70   81
 [91,]   95   56   97
 [92,]   64   79   74
 [93,]   83   68  100
 [94,]   58   61   99
 [95,]  100   97   91
 [96,]   97   89  100
 [97,]   96  100   89
 [98,]   75   72   92
 [99,]   58   94   61
[100,]   97   95   89
[101,]  137  145  105
[102,]  143  114  122
[103,]  126  121  144
[104,]  117  138  129
[105,]  133  129  141
[106,]  123  108  136
[107,]   85   60   91
[108,]  131  126  106
[109,]  129  104  117
[110,]  144  121  145
[111,]  148  116   78
[112,]  148  129  147
[113,]  140  141  121
[114,]  143  102  122
[115,]  122  102  143
[116,]  149  111  146
[117,]  138  104  148
[118,]  132  106  110
[119,]  123  106  136
[120,]   73   84   69
[121,]  144  141  125
[122,]  143  102  114
[123,]  106  119  108
[124,]  127  147  128
[125,]  121  144  141
[126,]  130  103  108
[127,]  124  128  139
[128,]  139  127  150
[129,]  133  105  104
[130,]  126  131  103
[131,]  108  103  126
[132,]  118  106  136
[133,]  129  105  104
[134,]   84   73  124
[135,]  104   84  134
[136,]  131  106  103
[137,]  149  116  101
[138,]  117  104  148
[139,]  128   71  127
[140,]  113  146  142
[141,]  145  121  113
[142,]  146  140  113
[143,]  143  114  122
[144,]  121  125  145
[145,]  141  121  144
[146,]  142  148  140
[147,]  124  112  127
[148,]  111  112  117
[149,]  137  116  111
[150,]  128  139  102
attr(,"nn.dist")
            [,1]      [,2]      [,3]
  [1,] 0.1000000 0.1414214 0.1414214
  [2,] 0.1414214 0.1414214 0.1414214
  [3,] 0.1414214 0.2449490 0.2645751
  [4,] 0.1414214 0.1732051 0.2236068
  [5,] 0.1414214 0.1414214 0.1732051
  [6,] 0.3316625 0.3464102 0.3605551
  [7,] 0.2236068 0.2645751 0.3000000
  [8,] 0.1000000 0.1414214 0.1732051
  [9,] 0.1414214 0.3000000 0.3162278
 [10,] 0.1000000 0.1732051 0.1732051
 [11,] 0.1000000 0.2828427 0.3000000
 [12,] 0.2236068 0.2236068 0.2828427
 [13,] 0.1414214 0.1732051 0.2000000
 [14,] 0.2449490 0.3162278 0.3464102
 [15,] 0.4123106 0.4690416 0.5477226
 [16,] 0.3605551 0.5477226 0.6164414
 [17,] 0.3464102 0.3605551 0.3872983
 [18,] 0.1000000 0.1414214 0.1732051
 [19,] 0.3316625 0.3872983 0.4690416
 [20,] 0.1414214 0.1414214 0.2449490
 [21,] 0.2828427 0.3000000 0.3605551
 [22,] 0.1414214 0.2449490 0.2449490
 [23,] 0.4582576 0.5099020 0.5099020
 [24,] 0.2000000 0.2645751 0.3741657
 [25,] 0.3000000 0.3741657 0.4123106
 [26,] 0.1732051 0.2000000 0.2236068
 [27,] 0.2000000 0.2236068 0.2236068
 [28,] 0.1414214 0.1414214 0.1414214
 [29,] 0.1414214 0.1414214 0.1414214
 [30,] 0.1414214 0.1732051 0.2236068
 [31,] 0.1414214 0.1414214 0.1732051
 [32,] 0.2828427 0.3000000 0.3000000
 [33,] 0.3464102 0.3464102 0.3741657
 [34,] 0.3464102 0.3605551 0.3872983
 [35,] 0.1000000 0.1414214 0.1414214
 [36,] 0.2236068 0.3000000 0.3162278
 [37,] 0.3000000 0.3162278 0.3316625
 [38,] 0.1414214 0.2449490 0.2645751
 [39,] 0.1414214 0.2000000 0.2449490
 [40,] 0.1000000 0.1414214 0.1414214
 [41,] 0.1414214 0.1732051 0.1732051
 [42,] 0.6244998 0.7141428 0.7681146
 [43,] 0.2000000 0.2236068 0.3000000
 [44,] 0.2236068 0.2645751 0.3162278
 [45,] 0.3605551 0.3741657 0.4123106
 [46,] 0.1414214 0.2000000 0.2000000
 [47,] 0.1414214 0.2449490 0.2449490
 [48,] 0.1414214 0.1414214 0.2236068
 [49,] 0.1000000 0.2236068 0.2449490
 [50,] 0.1414214 0.1732051 0.2236068
 [51,] 0.2645751 0.3316625 0.4358899
 [52,] 0.2645751 0.3162278 0.3464102
 [53,] 0.2645751 0.2828427 0.3162278
 [54,] 0.2000000 0.3000000 0.3162278
 [55,] 0.2449490 0.3162278 0.3741657
 [56,] 0.3000000 0.3162278 0.3162278
 [57,] 0.2645751 0.3741657 0.4242641
 [58,] 0.1414214 0.3872983 0.4582576
 [59,] 0.2449490 0.2449490 0.3162278
 [60,] 0.3872983 0.5099020 0.5196152
 [61,] 0.3605551 0.4582576 0.6708204
 [62,] 0.3000000 0.3316625 0.3605551
 [63,] 0.4898979 0.5196152 0.5477226
 [64,] 0.1414214 0.2236068 0.2449490
 [65,] 0.4242641 0.4472136 0.5099020
 [66,] 0.1414214 0.3162278 0.3162278
 [67,] 0.2000000 0.3000000 0.3872983
 [68,] 0.2449490 0.2828427 0.3316625
 [69,] 0.2645751 0.5099020 0.5385165
 [70,] 0.1732051 0.2449490 0.2645751
 [71,] 0.2236068 0.3000000 0.3605551
 [72,] 0.3316625 0.3464102 0.3741657
 [73,] 0.3605551 0.3605551 0.4123106
 [74,] 0.2236068 0.3000000 0.3872983
 [75,] 0.2000000 0.2645751 0.3605551
 [76,] 0.1414214 0.2449490 0.2645751
 [77,] 0.3162278 0.3464102 0.3464102
 [78,] 0.3162278 0.3741657 0.4123106
 [79,] 0.2000000 0.2449490 0.3316625
 [80,] 0.3464102 0.4242641 0.4358899
 [81,] 0.1414214 0.1732051 0.3000000
 [82,] 0.1414214 0.2645751 0.3464102
 [83,] 0.1414214 0.2645751 0.2828427
 [84,] 0.3316625 0.3605551 0.3605551
 [85,] 0.2000000 0.4123106 0.4795832
 [86,] 0.3741657 0.4242641 0.4582576
 [87,] 0.2828427 0.3162278 0.3162278
 [88,] 0.2645751 0.5744563 0.5916080
 [89,] 0.1732051 0.1732051 0.2236068
 [90,] 0.2000000 0.2449490 0.3000000
 [91,] 0.2645751 0.3162278 0.4242641
 [92,] 0.1414214 0.2000000 0.3000000
 [93,] 0.1414214 0.2449490 0.2645751
 [94,] 0.1414214 0.3605551 0.3872983
 [95,] 0.1732051 0.2236068 0.2645751
 [96,] 0.1414214 0.1732051 0.2449490
 [97,] 0.1414214 0.1414214 0.1732051
 [98,] 0.2000000 0.3316625 0.3464102
 [99,] 0.3872983 0.3872983 0.7211103
[100,] 0.1414214 0.1732051 0.2236068
[101,] 0.4242641 0.5000000 0.5099020
[102,] 0.0000000 0.2645751 0.3162278
[103,] 0.3872983 0.4000000 0.4123106
[104,] 0.2449490 0.2449490 0.3316625
[105,] 0.3000000 0.3162278 0.3605551
[106,] 0.2645751 0.5291503 0.5477226
[107,] 0.7348469 0.7615773 0.7937254
[108,] 0.2645751 0.4358899 0.5291503
[109,] 0.5567764 0.6000000 0.6164414
[110,] 0.6324555 0.6708204 0.7071068
[111,] 0.2236068 0.3741657 0.4242641
[112,] 0.3464102 0.3741657 0.3741657
[113,] 0.1732051 0.3464102 0.3605551
[114,] 0.2645751 0.2645751 0.3316625
[115,] 0.4898979 0.5099020 0.5099020
[116,] 0.3000000 0.3741657 0.3741657
[117,] 0.1414214 0.2449490 0.3605551
[118,] 0.4123106 0.8185353 0.8602325
[119,] 0.4123106 0.5477226 0.8944272
[120,] 0.4358899 0.5196152 0.5385165
[121,] 0.2236068 0.2645751 0.3000000
[122,] 0.3162278 0.3162278 0.3316625
[123,] 0.2645751 0.4123106 0.6082763
[124,] 0.1732051 0.2449490 0.3605551
[125,] 0.3000000 0.3162278 0.3741657
[126,] 0.3464102 0.3872983 0.4358899
[127,] 0.1732051 0.2449490 0.2828427
[128,] 0.1414214 0.2449490 0.2828427
[129,] 0.1000000 0.3162278 0.3316625
[130,] 0.3464102 0.5099020 0.5196152
[131,] 0.2645751 0.4582576 0.4690416
[132,] 0.4123106 0.8831761 0.9273618
[133,] 0.1000000 0.3000000 0.4242641
[134,] 0.3316625 0.3605551 0.3741657
[135,] 0.5385165 0.5567764 0.5830952
[136,] 0.5385165 0.5477226 0.6633250
[137,] 0.2449490 0.3872983 0.4242641
[138,] 0.1414214 0.2449490 0.3872983
[139,] 0.1414214 0.2236068 0.2828427
[140,] 0.1732051 0.3605551 0.3605551
[141,] 0.2449490 0.2645751 0.3464102
[142,] 0.2449490 0.3605551 0.4690416
[143,] 0.0000000 0.2645751 0.3162278
[144,] 0.2236068 0.3162278 0.3162278
[145,] 0.2449490 0.3000000 0.3162278
[146,] 0.2449490 0.3605551 0.3605551
[147,] 0.2449490 0.3741657 0.3872983
[148,] 0.2236068 0.3464102 0.3605551
[149,] 0.2449490 0.3000000 0.5567764
[150,] 0.2828427 0.3162278 0.3316625
Levels: c s v
  attributes(.Last.value)
NULL

[Package FNN version 1.1.3.1 Index]