Aliases: knn.cv
Keywords: classif nonparametric
### ** Examples data(iris3) train <- rbind(iris3[,,1], iris3[,,2], iris3[,,3]) cl <- factor(c(rep("s",50), rep("c",50), rep("v",50))) knn.cv(train, cl, k = 3, prob = TRUE)
[1] s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s [38] s s s s s s s s s s s s s c c c c c c c c c c c c c c c c c c c c v c v c [75] c c c c c c c c c v c c c c c c c c c c c c c c c c v v v v v v c v v v v [112] v v v v v v v v c v v v v v v v v v v v v v c v v v v v v v v v v v v v v [149] v v attr(,"prob") [1] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [8] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [22] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [29] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [36] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [43] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [50] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [57] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [64] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.6666667 1.0000000 [71] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [78] 0.6666667 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [85] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [92] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [99] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [106] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.6666667 1.0000000 [113] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [120] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [127] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [134] 0.6666667 0.6666667 1.0000000 1.0000000 1.0000000 0.6666667 1.0000000 [141] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 [148] 1.0000000 1.0000000 1.0000000 attr(,"nn.index") [,1] [,2] [,3] [1,] 18 5 40 [2,] 35 46 13 [3,] 48 4 7 [4,] 48 30 31 [5,] 38 1 18 [6,] 19 11 49 [7,] 48 3 12 [8,] 40 50 1 [9,] 39 4 43 [10,] 35 2 31 [11,] 49 28 37 [12,] 30 8 27 [13,] 2 10 46 [14,] 39 43 9 [15,] 34 17 16 [16,] 34 15 6 [17,] 11 49 34 [18,] 1 41 5 [19,] 6 11 49 [20,] 22 47 49 [21,] 32 28 29 [22,] 20 47 18 [23,] 7 3 38 [24,] 27 44 40 [25,] 12 30 27 [26,] 35 10 2 [27,] 24 44 8 [28,] 29 1 40 [29,] 28 40 1 [30,] 31 4 12 [31,] 30 35 10 [32,] 21 28 29 [33,] 34 47 20 [34,] 33 16 17 [35,] 10 2 31 [36,] 50 2 3 [37,] 11 32 29 [38,] 5 1 41 [39,] 9 43 14 [40,] 8 1 28 [41,] 18 1 5 [42,] 9 39 46 [43,] 39 48 4 [44,] 27 24 22 [45,] 47 6 22 [46,] 2 13 35 [47,] 20 22 49 [48,] 4 3 43 [49,] 11 28 20 [50,] 8 40 36 [51,] 53 87 66 [52,] 57 76 66 [53,] 51 87 78 [54,] 90 81 70 [55,] 59 76 77 [56,] 67 91 97 [57,] 52 86 92 [58,] 94 99 61 [59,] 76 55 66 [60,] 90 95 54 [61,] 94 58 82 [62,] 97 79 96 [63,] 93 70 68 [64,] 92 74 79 [65,] 83 80 89 [66,] 76 59 87 [67,] 85 56 97 [68,] 93 83 100 [69,] 88 73 120 [70,] 81 90 82 [71,] 139 128 150 [72,] 98 83 93 [73,] 134 124 147 [74,] 64 92 79 [75,] 98 76 59 [76,] 66 59 75 [77,] 59 87 53 [78,] 53 87 148 [79,] 92 64 62 [80,] 82 81 70 [81,] 82 70 90 [82,] 81 70 80 [83,] 93 100 68 [84,] 134 102 143 [85,] 67 56 97 [86,] 57 71 52 [87,] 53 66 59 [88,] 69 73 63 [89,] 96 97 100 [90,] 54 70 81 [91,] 95 56 97 [92,] 64 79 74 [93,] 83 68 100 [94,] 58 61 99 [95,] 100 97 91 [96,] 97 89 100 [97,] 96 100 89 [98,] 75 72 92 [99,] 58 94 61 [100,] 97 95 89 [101,] 137 145 105 [102,] 143 114 122 [103,] 126 121 144 [104,] 117 138 129 [105,] 133 129 141 [106,] 123 108 136 [107,] 85 60 91 [108,] 131 126 106 [109,] 129 104 117 [110,] 144 121 145 [111,] 148 116 78 [112,] 148 129 147 [113,] 140 141 121 [114,] 143 102 122 [115,] 122 102 143 [116,] 149 111 146 [117,] 138 104 148 [118,] 132 106 110 [119,] 123 106 136 [120,] 73 84 69 [121,] 144 141 125 [122,] 143 102 114 [123,] 106 119 108 [124,] 127 147 128 [125,] 121 144 141 [126,] 130 103 108 [127,] 124 128 139 [128,] 139 127 150 [129,] 133 105 104 [130,] 126 131 103 [131,] 108 103 126 [132,] 118 106 136 [133,] 129 105 104 [134,] 84 73 124 [135,] 104 84 134 [136,] 131 106 103 [137,] 149 116 101 [138,] 117 104 148 [139,] 128 71 127 [140,] 113 146 142 [141,] 145 121 113 [142,] 146 140 113 [143,] 143 114 122 [144,] 121 125 145 [145,] 141 121 144 [146,] 142 148 140 [147,] 124 112 127 [148,] 111 112 117 [149,] 137 116 111 [150,] 128 139 102 attr(,"nn.dist") [,1] [,2] [,3] [1,] 0.1000000 0.1414214 0.1414214 [2,] 0.1414214 0.1414214 0.1414214 [3,] 0.1414214 0.2449490 0.2645751 [4,] 0.1414214 0.1732051 0.2236068 [5,] 0.1414214 0.1414214 0.1732051 [6,] 0.3316625 0.3464102 0.3605551 [7,] 0.2236068 0.2645751 0.3000000 [8,] 0.1000000 0.1414214 0.1732051 [9,] 0.1414214 0.3000000 0.3162278 [10,] 0.1000000 0.1732051 0.1732051 [11,] 0.1000000 0.2828427 0.3000000 [12,] 0.2236068 0.2236068 0.2828427 [13,] 0.1414214 0.1732051 0.2000000 [14,] 0.2449490 0.3162278 0.3464102 [15,] 0.4123106 0.4690416 0.5477226 [16,] 0.3605551 0.5477226 0.6164414 [17,] 0.3464102 0.3605551 0.3872983 [18,] 0.1000000 0.1414214 0.1732051 [19,] 0.3316625 0.3872983 0.4690416 [20,] 0.1414214 0.1414214 0.2449490 [21,] 0.2828427 0.3000000 0.3605551 [22,] 0.1414214 0.2449490 0.2449490 [23,] 0.4582576 0.5099020 0.5099020 [24,] 0.2000000 0.2645751 0.3741657 [25,] 0.3000000 0.3741657 0.4123106 [26,] 0.1732051 0.2000000 0.2236068 [27,] 0.2000000 0.2236068 0.2236068 [28,] 0.1414214 0.1414214 0.1414214 [29,] 0.1414214 0.1414214 0.1414214 [30,] 0.1414214 0.1732051 0.2236068 [31,] 0.1414214 0.1414214 0.1732051 [32,] 0.2828427 0.3000000 0.3000000 [33,] 0.3464102 0.3464102 0.3741657 [34,] 0.3464102 0.3605551 0.3872983 [35,] 0.1000000 0.1414214 0.1414214 [36,] 0.2236068 0.3000000 0.3162278 [37,] 0.3000000 0.3162278 0.3316625 [38,] 0.1414214 0.2449490 0.2645751 [39,] 0.1414214 0.2000000 0.2449490 [40,] 0.1000000 0.1414214 0.1414214 [41,] 0.1414214 0.1732051 0.1732051 [42,] 0.6244998 0.7141428 0.7681146 [43,] 0.2000000 0.2236068 0.3000000 [44,] 0.2236068 0.2645751 0.3162278 [45,] 0.3605551 0.3741657 0.4123106 [46,] 0.1414214 0.2000000 0.2000000 [47,] 0.1414214 0.2449490 0.2449490 [48,] 0.1414214 0.1414214 0.2236068 [49,] 0.1000000 0.2236068 0.2449490 [50,] 0.1414214 0.1732051 0.2236068 [51,] 0.2645751 0.3316625 0.4358899 [52,] 0.2645751 0.3162278 0.3464102 [53,] 0.2645751 0.2828427 0.3162278 [54,] 0.2000000 0.3000000 0.3162278 [55,] 0.2449490 0.3162278 0.3741657 [56,] 0.3000000 0.3162278 0.3162278 [57,] 0.2645751 0.3741657 0.4242641 [58,] 0.1414214 0.3872983 0.4582576 [59,] 0.2449490 0.2449490 0.3162278 [60,] 0.3872983 0.5099020 0.5196152 [61,] 0.3605551 0.4582576 0.6708204 [62,] 0.3000000 0.3316625 0.3605551 [63,] 0.4898979 0.5196152 0.5477226 [64,] 0.1414214 0.2236068 0.2449490 [65,] 0.4242641 0.4472136 0.5099020 [66,] 0.1414214 0.3162278 0.3162278 [67,] 0.2000000 0.3000000 0.3872983 [68,] 0.2449490 0.2828427 0.3316625 [69,] 0.2645751 0.5099020 0.5385165 [70,] 0.1732051 0.2449490 0.2645751 [71,] 0.2236068 0.3000000 0.3605551 [72,] 0.3316625 0.3464102 0.3741657 [73,] 0.3605551 0.3605551 0.4123106 [74,] 0.2236068 0.3000000 0.3872983 [75,] 0.2000000 0.2645751 0.3605551 [76,] 0.1414214 0.2449490 0.2645751 [77,] 0.3162278 0.3464102 0.3464102 [78,] 0.3162278 0.3741657 0.4123106 [79,] 0.2000000 0.2449490 0.3316625 [80,] 0.3464102 0.4242641 0.4358899 [81,] 0.1414214 0.1732051 0.3000000 [82,] 0.1414214 0.2645751 0.3464102 [83,] 0.1414214 0.2645751 0.2828427 [84,] 0.3316625 0.3605551 0.3605551 [85,] 0.2000000 0.4123106 0.4795832 [86,] 0.3741657 0.4242641 0.4582576 [87,] 0.2828427 0.3162278 0.3162278 [88,] 0.2645751 0.5744563 0.5916080 [89,] 0.1732051 0.1732051 0.2236068 [90,] 0.2000000 0.2449490 0.3000000 [91,] 0.2645751 0.3162278 0.4242641 [92,] 0.1414214 0.2000000 0.3000000 [93,] 0.1414214 0.2449490 0.2645751 [94,] 0.1414214 0.3605551 0.3872983 [95,] 0.1732051 0.2236068 0.2645751 [96,] 0.1414214 0.1732051 0.2449490 [97,] 0.1414214 0.1414214 0.1732051 [98,] 0.2000000 0.3316625 0.3464102 [99,] 0.3872983 0.3872983 0.7211103 [100,] 0.1414214 0.1732051 0.2236068 [101,] 0.4242641 0.5000000 0.5099020 [102,] 0.0000000 0.2645751 0.3162278 [103,] 0.3872983 0.4000000 0.4123106 [104,] 0.2449490 0.2449490 0.3316625 [105,] 0.3000000 0.3162278 0.3605551 [106,] 0.2645751 0.5291503 0.5477226 [107,] 0.7348469 0.7615773 0.7937254 [108,] 0.2645751 0.4358899 0.5291503 [109,] 0.5567764 0.6000000 0.6164414 [110,] 0.6324555 0.6708204 0.7071068 [111,] 0.2236068 0.3741657 0.4242641 [112,] 0.3464102 0.3741657 0.3741657 [113,] 0.1732051 0.3464102 0.3605551 [114,] 0.2645751 0.2645751 0.3316625 [115,] 0.4898979 0.5099020 0.5099020 [116,] 0.3000000 0.3741657 0.3741657 [117,] 0.1414214 0.2449490 0.3605551 [118,] 0.4123106 0.8185353 0.8602325 [119,] 0.4123106 0.5477226 0.8944272 [120,] 0.4358899 0.5196152 0.5385165 [121,] 0.2236068 0.2645751 0.3000000 [122,] 0.3162278 0.3162278 0.3316625 [123,] 0.2645751 0.4123106 0.6082763 [124,] 0.1732051 0.2449490 0.3605551 [125,] 0.3000000 0.3162278 0.3741657 [126,] 0.3464102 0.3872983 0.4358899 [127,] 0.1732051 0.2449490 0.2828427 [128,] 0.1414214 0.2449490 0.2828427 [129,] 0.1000000 0.3162278 0.3316625 [130,] 0.3464102 0.5099020 0.5196152 [131,] 0.2645751 0.4582576 0.4690416 [132,] 0.4123106 0.8831761 0.9273618 [133,] 0.1000000 0.3000000 0.4242641 [134,] 0.3316625 0.3605551 0.3741657 [135,] 0.5385165 0.5567764 0.5830952 [136,] 0.5385165 0.5477226 0.6633250 [137,] 0.2449490 0.3872983 0.4242641 [138,] 0.1414214 0.2449490 0.3872983 [139,] 0.1414214 0.2236068 0.2828427 [140,] 0.1732051 0.3605551 0.3605551 [141,] 0.2449490 0.2645751 0.3464102 [142,] 0.2449490 0.3605551 0.4690416 [143,] 0.0000000 0.2645751 0.3162278 [144,] 0.2236068 0.3162278 0.3162278 [145,] 0.2449490 0.3000000 0.3162278 [146,] 0.2449490 0.3605551 0.3605551 [147,] 0.2449490 0.3741657 0.3872983 [148,] 0.2236068 0.3464102 0.3605551 [149,] 0.2449490 0.3000000 0.5567764 [150,] 0.2828427 0.3162278 0.3316625 Levels: c s v
attributes(.Last.value)
NULL