ggcoef_model {GGally} | R Documentation |
Plot model coefficients
ggcoef_model(
model,
tidy_fun = broom::tidy,
conf.int = TRUE,
conf.level = 0.95,
exponentiate = FALSE,
variable_labels = NULL,
term_labels = NULL,
interaction_sep = " * ",
categorical_terms_pattern = "{level}",
add_reference_rows = TRUE,
no_reference_row = NULL,
intercept = FALSE,
include = dplyr::everything(),
significance = 1 - conf.level,
significance_labels = NULL,
show_p_values = TRUE,
signif_stars = TRUE,
return_data = FALSE,
...
)
ggcoef_compare(
models,
type = c("dodged", "faceted"),
tidy_fun = broom::tidy,
conf.int = TRUE,
conf.level = 0.95,
exponentiate = FALSE,
variable_labels = NULL,
term_labels = NULL,
interaction_sep = " * ",
categorical_terms_pattern = "{level}",
add_reference_rows = TRUE,
no_reference_row = NULL,
intercept = FALSE,
include = dplyr::everything(),
significance = 1 - conf.level,
significance_labels = NULL,
return_data = FALSE,
...
)
ggcoef_multinom(
model,
type = c("dodged", "faceted"),
y.level_label = NULL,
tidy_fun = broom::tidy,
conf.int = TRUE,
conf.level = 0.95,
exponentiate = FALSE,
variable_labels = NULL,
term_labels = NULL,
interaction_sep = " * ",
categorical_terms_pattern = "{level}",
add_reference_rows = TRUE,
no_reference_row = NULL,
intercept = FALSE,
include = dplyr::everything(),
significance = 1 - conf.level,
significance_labels = NULL,
show_p_values = TRUE,
signif_stars = TRUE,
return_data = FALSE,
...
)
ggcoef_plot(
data,
x = "estimate",
y = "label",
exponentiate = FALSE,
point_size = 2,
point_stroke = 2,
point_fill = "white",
colour = NULL,
colour_guide = TRUE,
colour_lab = "",
colour_labels = ggplot2::waiver(),
shape = "significance",
shape_values = c(16, 21),
shape_guide = TRUE,
shape_lab = "",
errorbar = TRUE,
errorbar_height = 0.1,
errorbar_coloured = FALSE,
stripped_rows = TRUE,
strips_odd = "#11111111",
strips_even = "#00000000",
vline = TRUE,
vline_colour = "grey50",
dodged = FALSE,
dodged_width = 0.8,
facet_row = "var_label",
facet_col = NULL,
facet_labeller = "label_value"
)
model |
a regression model object |
tidy_fun |
option to specify a custom tidier function |
conf.int |
should confidence intervals be computed? (see |
conf.level |
the confidence level to use for the confidence
interval if |
exponentiate |
if |
variable_labels |
a named list or a named vector of custom variable labels |
term_labels |
a named list or a named vector of custom term labels |
interaction_sep |
separator for interaction terms |
categorical_terms_pattern |
a glue pattern for
labels of categorical terms with treatment or sum contrasts
(see |
add_reference_rows |
should reference rows be added? |
no_reference_row |
variables (accepts tidyselect notation)
for those no reference row should be added, when |
intercept |
should the intercept(s) be included? |
include |
variables to include. Accepts tidyselect
syntax. Use |
significance |
level (between 0 and 1) below which a
coefficient is consider to be significantly different from 0
(or 1 if |
significance_labels |
optional vector with custom labels for significance variable |
show_p_values |
if |
signif_stars |
if |
return_data |
if |
... |
parameters passed to |
models |
named list of models |
type |
a dodged plot or a faceted plot? |
y.level_label |
an optional named vector for labeling |
data |
a data frame containing data to be plotted,
typically the output of |
x, y |
variables mapped to x and y axis |
point_size |
size of the points |
point_stroke |
thickness of the points |
point_fill |
fill colour for the points |
colour |
optional variable name to be mapped to colour aesthetic |
colour_guide |
should colour guide be displayed in the legend? |
colour_lab |
label of the colour aesthetic in the legend |
colour_labels |
labels argument passed to
|
shape |
optional variable name to be mapped to the shape aesthetic |
shape_values |
values of the different shapes to use in
|
shape_guide |
should shape guide be displayed in the legend? |
shape_lab |
label of the shape aesthetic in the legend |
errorbar |
should error bars be plotted? |
errorbar_height |
height of error bars |
errorbar_coloured |
should error bars be colored as the points? |
stripped_rows |
should stripped rows be displayed in the background? |
strips_odd |
color of the odd rows |
strips_even |
color of the even rows |
vline |
should a vertical line be drawn at 0 (or 1 if |
vline_colour |
colour of vertical line |
dodged |
should points be dodged (according to the colour aesthetic)? |
dodged_width |
width value for |
facet_row |
variable name to be used for row facets |
facet_col |
optional variable name to be used for column facets |
facet_labeller |
labeller function to be used for labeling facets;
if labels are too long, you can use |
ggcoef_model()
, ggcoef_multinom()
and ggcoef_compare()
use
broom.helpers::tidy_plus_plus()
to obtain a tibble
of the model
coefficients, apply additional data transformation and then pass the
produced tibble
to ggcoef_plot()
to generate the plot.
For more control, you can use the argument return_data = TRUE
to
get the produced tibble
, apply any transformation of your own and
then pass your customized tibble
to ggcoef_plot()
.
ggcoef_model
: Redesign of ggcoef()
based on broom.helpers::tidy_plus_plus()
.
ggcoef_compare
: Designed for displaying several models on the same plot.
ggcoef_multinom
: A variation of ggcoef_model()
adapted to multinomial logistic regressions performed with nnet::multinom()
.
ggcoef_plot
: SOME DESCRIPTION HERE
# Small function to display plots only if it's interactive
p_ <- GGally::print_if_interactive
if (require(broom.helpers)) {
data(tips, package = "reshape")
mod_simple <- lm(tip ~ day + time + total_bill, data = tips)
p_(ggcoef_model(mod_simple))
# custom variable labels
# you can use the labelled package to define variable labels before computing model
if (require(labelled)) {
tips_labelled <- tips %>%
labelled::set_variable_labels(
day = "Day of the week",
time = "Lunch or Dinner",
total_bill = "Bill's total"
)
mod_labelled <- lm(tip ~ day + time + total_bill, data = tips_labelled)
p_(ggcoef_model(mod_labelled))
}
# you can provide custom variable labels with 'variable_labels'
p_(ggcoef_model(
mod_simple,
variable_labels = c(
day = "Week day",
time = "Time (lunch or dinner ?)",
total_bill = "Total of the bill"
)
))
# if labels are too long, you can use 'facet_labeller' to wrap them
p_(ggcoef_model(
mod_simple,
variable_labels = c(
day = "Week day",
time = "Time (lunch or dinner ?)",
total_bill = "Total of the bill"
),
facet_labeller = label_wrap_gen(10)
))
# do not display variable facets but add colour guide
p_(ggcoef_model(mod_simple, facet_row = NULL, colour_guide = TRUE))
# a logistic regression example
d_titanic <- as.data.frame(Titanic)
d_titanic$Survived <- factor(d_titanic$Survived, c("No", "Yes"))
mod_titanic <- glm(
Survived ~ Sex * Age + Class,
weights = Freq,
data = d_titanic,
family = binomial
)
# use 'exponentiate = TRUE' to get the Odds Ratio
p_(ggcoef_model(mod_titanic, exponentiate = TRUE))
# display intercepts
p_(ggcoef_model(mod_titanic, exponentiate = TRUE, intercept = TRUE))
# customize terms labels
p_(
ggcoef_model(
mod_titanic,
exponentiate = TRUE,
show_p_values = FALSE,
signif_stars = FALSE,
add_reference_rows = FALSE,
categorical_terms_pattern = "{level} (ref: {reference_level})",
interaction_sep = " x "
) +
scale_y_discrete(labels = scales::label_wrap(15))
)
# display only a subset of terms
p_(ggcoef_model(mod_titanic, exponentiate = TRUE, include = c("Age", "Class")))
# do not change points' shape based on significance
p_(ggcoef_model(mod_titanic, exponentiate = TRUE, significance = NULL))
# a black and white version
p_(ggcoef_model(
mod_titanic, exponentiate = TRUE,
colour = NULL, stripped_rows = FALSE
))
# show dichotomous terms on one row
p_(ggcoef_model(
mod_titanic,
exponentiate = TRUE,
no_reference_row = broom.helpers::all_dichotomous(),
categorical_terms_pattern =
"{ifelse(dichotomous, paste0(level, ' / ', reference_level), level)}",
show_p_values = FALSE
))
# works also with with polynomial terms
mod_poly <- lm(
tip ~ poly(total_bill, 3) + day,
data = tips,
)
p_(ggcoef_model(mod_poly))
# or with different type of contrasts
# for sum contrasts, the value of the reference term is computed
if (require(emmeans)) {
mod2 <- lm(
tip ~ day + time + sex,
data = tips,
contrasts = list(time = contr.sum, day = contr.treatment(4, base = 3))
)
p_(ggcoef_model(mod2))
}
}
if (require(broom.helpers)) {
# Use ggcoef_compare() for comparing several models on the same plot
mod1 <- lm(Fertility ~ ., data = swiss)
mod2 <- step(mod1, trace = 0)
mod3 <- lm(Fertility ~ Agriculture + Education * Catholic, data = swiss)
models <- list("Full model" = mod1, "Simplified model" = mod2, "With interaction" = mod3)
p_(ggcoef_compare(models))
p_(ggcoef_compare(models, type = "faceted"))
# you can reverse the vertical position of the point by using a negative value
# for dodged_width (but it will produce some warnings)
## Not run:
p_(ggcoef_compare(models, dodged_width = -.9))
## End(Not run)
}
# specific function for nnet::multinom models
if (require(broom.helpers) && require(nnet)) {
data(happy)
mod <- multinom(happy ~ age + degree + sex, data = happy)
p_(ggcoef_multinom(mod, exponentiate = TRUE))
p_(ggcoef_multinom(mod, type = "faceted"))
p_(ggcoef_multinom(
mod, type = "faceted",
y.level_label = c(
"pretty happy" = "pretty happy\n(ref: very happy)",
"very happy" = "very happy"
)
))
}