Aliases: muscle
Keywords: datasets
### ** Examples ## IGNORE_RDIFF_BEGIN A <- model.matrix(~ Strip - 1, data=muscle) rats.nls1 <- nls(log(Length) ~ cbind(A, rho^Conc), data = muscle, start = c(rho=0.1), algorithm="plinear") (B <- coef(rats.nls1))
rho .lin.StripS01 .lin.StripS02 .lin.StripS03 .lin.StripS04 0.07776401 3.08304824 3.30137838 3.44562531 2.80464434 .lin.StripS05 .lin.StripS06 .lin.StripS07 .lin.StripS08 .lin.StripS09 2.60835015 3.03357725 3.52301734 3.38711844 3.46709396 .lin.StripS10 .lin.StripS11 .lin.StripS12 .lin.StripS13 .lin.StripS14 3.81438456 3.73878664 3.51332581 3.39741115 3.47088608 .lin.StripS15 .lin.StripS16 .lin.StripS17 .lin.StripS18 .lin.StripS19 3.72895847 3.31863862 3.37938673 2.96452195 3.58468686 .lin.StripS20 .lin.StripS21 .lin22 3.39628029 3.36998872 -2.96015460
st <- list(alpha = B[2:22], beta = B[23], rho = B[1]) (rats.nls2 <- nls(log(Length) ~ alpha[Strip] + beta*rho^Conc, data = muscle, start = st))
Nonlinear regression model model: log(Length) ~ alpha[Strip] + beta * rho^Conc data: muscle alpha..lin.StripS01 alpha..lin.StripS02 alpha..lin.StripS03 alpha..lin.StripS04 3.08305 3.30138 3.44563 2.80464 alpha..lin.StripS05 alpha..lin.StripS06 alpha..lin.StripS07 alpha..lin.StripS08 2.60835 3.03358 3.52302 3.38712 alpha..lin.StripS09 alpha..lin.StripS10 alpha..lin.StripS11 alpha..lin.StripS12 3.46709 3.81438 3.73879 3.51333 alpha..lin.StripS13 alpha..lin.StripS14 alpha..lin.StripS15 alpha..lin.StripS16 3.39741 3.47089 3.72896 3.31864 alpha..lin.StripS17 alpha..lin.StripS18 alpha..lin.StripS19 alpha..lin.StripS20 3.37939 2.96452 3.58469 3.39628 alpha..lin.StripS21 beta..lin22 rho.rho 3.36999 -2.96015 0.07776 residual sum-of-squares: 1.045 Number of iterations to convergence: 0 Achieved convergence tolerance: 4.923e-06
## IGNORE_RDIFF_END Muscle <- with(muscle, { Muscle <- expand.grid(Conc = sort(unique(Conc)), Strip = levels(Strip)) Muscle$Yhat <- predict(rats.nls2, Muscle) Muscle <- cbind(Muscle, logLength = rep(as.numeric(NA), 126)) ind <- match(paste(Strip, Conc), paste(Muscle$Strip, Muscle$Conc)) Muscle$logLength[ind] <- log(Length) Muscle}) lattice::xyplot(Yhat ~ Conc | Strip, Muscle, as.table = TRUE, ylim = range(c(Muscle$Yhat, Muscle$logLength), na.rm = TRUE), subscripts = TRUE, xlab = "Calcium Chloride concentration (mM)", ylab = "log(Length in mm)", panel = function(x, y, subscripts, ...) { panel.xyplot(x, Muscle$logLength[subscripts], ...) llines(spline(x, y)) })