Aliases: nlschools
Keywords: datasets
### ** Examples ## Don't show: op <- options(digits=5) ## End(Don't show) nl1 <- within(nlschools, { IQave <- tapply(IQ, class, mean)[as.character(class)] IQ <- IQ - IQave }) cen <- c("IQ", "IQave", "SES") nl1[cen] <- scale(nl1[cen], center = TRUE, scale = FALSE) nl.lme <- nlme::lme(lang ~ IQ*COMB + IQave + SES, random = ~ IQ | class, data = nl1) ## IGNORE_RDIFF_BEGIN summary(nl.lme)
Linear mixed-effects model fit by REML Data: nl1 AIC BIC logLik 15120 15178 -7550.2 Random effects: Formula: ~IQ | class Structure: General positive-definite, Log-Cholesky parametrization StdDev Corr (Intercept) 2.78707 (Intr) IQ 0.48424 -0.516 Residual 6.24839 Fixed effects: lang ~ IQ * COMB + IQave + SES Value Std.Error DF t-value p-value (Intercept) 41.370 0.35364 2151 116.985 0.0000 IQ 2.124 0.10070 2151 21.088 0.0000 COMB1 -1.672 0.58719 130 -2.847 0.0051 IQave 3.248 0.30021 130 10.818 0.0000 SES 0.157 0.01465 2151 10.697 0.0000 IQ:COMB1 0.431 0.18594 2151 2.317 0.0206 Correlation: (Intr) IQ COMB1 IQave SES IQ -0.257 COMB1 -0.609 0.155 IQave -0.049 0.041 0.171 SES 0.010 -0.190 -0.001 -0.168 IQ:COMB1 0.139 -0.522 -0.206 -0.016 -0.003 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -4.059387 -0.631084 0.065519 0.717864 2.794540 Number of Observations: 2287 Number of Groups: 133
## IGNORE_RDIFF_END ## Don't show: options(op) ## End(Don't show)