Aliases: wpbc
Keywords: datasets
### ** Examples data("wpbc", package = "TH.data") ### fit logistic regression model coef(glm(status ~ ., data = wpbc[,colnames(wpbc) != "time"], family = binomial()))
(Intercept) mean_radius mean_texture mean_perimeter 8.771552e+00 -6.743957e+00 -2.702738e-01 6.920870e-01 mean_area mean_smoothness mean_compactness mean_concavity 1.879913e-02 1.144647e+02 -1.414945e+00 -2.385312e+01 mean_concavepoints mean_symmetry mean_fractaldim SE_radius -6.837282e+00 1.113682e+01 -2.778124e+02 -5.925547e+00 SE_texture SE_perimeter SE_area SE_smoothness -3.317364e+00 1.793951e+00 -2.677410e-02 1.971475e+02 SE_compactness SE_concavity SE_concavepoints SE_symmetry 1.440310e+02 -1.314936e+02 -2.155843e+02 1.350328e+02 SE_fractaldim worst_radius worst_texture worst_perimeter 3.329786e+02 2.355794e+00 2.463149e-01 -1.376426e-01 worst_area worst_smoothness worst_compactness worst_concavity -8.898719e-03 1.034751e+01 -1.691356e+01 1.586701e+01 worst_concavepoints worst_symmetry worst_fractaldim tsize -4.592863e+00 -1.488048e+01 1.868188e+01 -2.997064e-02 pnodes 1.278008e-01