Aliases: boot.ci
Keywords: nonparametric htest
### ** Examples # confidence intervals for the city data ratio <- function(d, w) sum(d$x * w)/sum(d$u * w) city.boot <- boot(city, ratio, R = 999, stype = "w", sim = "ordinary") boot.ci(city.boot, conf = c(0.90, 0.95), type = c("norm", "basic", "perc", "bca"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 999 bootstrap replicates CALL : boot.ci(boot.out = city.boot, conf = c(0.9, 0.95), type = c("norm", "basic", "perc", "bca")) Intervals : Level Normal Basic 90% ( 1.074, 1.878 ) ( 1.059, 1.763 ) 95% ( 0.997, 1.955 ) ( 0.907, 1.792 ) Level Percentile BCa 90% ( 1.278, 1.982 ) ( 1.283, 2.005 ) 95% ( 1.248, 2.133 ) ( 1.251, 2.161 ) Calculations and Intervals on Original Scale
# studentized confidence interval for the two sample # difference of means problem using the final two series # of the gravity data. diff.means <- function(d, f) { n <- nrow(d) gp1 <- 1:table(as.numeric(d$series))[1] m1 <- sum(d[gp1,1] * f[gp1])/sum(f[gp1]) m2 <- sum(d[-gp1,1] * f[-gp1])/sum(f[-gp1]) ss1 <- sum(d[gp1,1]^2 * f[gp1]) - (m1 * m1 * sum(f[gp1])) ss2 <- sum(d[-gp1,1]^2 * f[-gp1]) - (m2 * m2 * sum(f[-gp1])) c(m1 - m2, (ss1 + ss2)/(sum(f) - 2)) } grav1 <- gravity[as.numeric(gravity[,2]) >= 7, ] grav1.boot <- boot(grav1, diff.means, R = 999, stype = "f", strata = grav1[ ,2]) boot.ci(grav1.boot, type = c("stud", "norm"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 999 bootstrap replicates CALL : boot.ci(boot.out = grav1.boot, type = c("stud", "norm")) Intervals : Level Normal Studentized 95% (-5.901, 0.210 ) (-7.476, 0.012 ) Calculations and Intervals on Original Scale
# Nonparametric confidence intervals for mean failure time # of the air-conditioning data as in Example 5.4 of Davison # and Hinkley (1997) mean.fun <- function(d, i) { m <- mean(d$hours[i]) n <- length(i) v <- (n-1)*var(d$hours[i])/n^2 c(m, v) } air.boot <- boot(aircondit, mean.fun, R = 999) boot.ci(air.boot, type = c("norm", "basic", "perc", "stud"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 999 bootstrap replicates CALL : boot.ci(boot.out = air.boot, type = c("norm", "basic", "perc", "stud")) Intervals : Level Normal Basic 95% ( 33.0, 178.2 ) ( 21.9, 167.5 ) Level Studentized Percentile 95% ( 45.4, 282.0 ) ( 48.7, 194.2 ) Calculations and Intervals on Original Scale
# Now using the log transformation # There are two ways of doing this and they both give the # same intervals. # Method 1 boot.ci(air.boot, type = c("norm", "basic", "perc", "stud"), h = log, hdot = function(x) 1/x)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 999 bootstrap replicates CALL : boot.ci(boot.out = air.boot, type = c("norm", "basic", "perc", "stud"), h = log, hdot = function(x) 1/x) Intervals : Level Normal Basic 95% ( 4.033, 5.404 ) ( 4.097, 5.481 ) Level Studentized Percentile 95% ( 3.923, 5.742 ) ( 3.885, 5.269 ) Calculations and Intervals on Transformed Scale
# Method 2 vt0 <- air.boot$t0[2]/air.boot$t0[1]^2 vt <- air.boot$t[, 2]/air.boot$t[ ,1]^2 boot.ci(air.boot, type = c("norm", "basic", "perc", "stud"), t0 = log(air.boot$t0[1]), t = log(air.boot$t[,1]), var.t0 = vt0, var.t = vt)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 999 bootstrap replicates CALL : boot.ci(boot.out = air.boot, type = c("norm", "basic", "perc", "stud"), var.t0 = vt0, var.t = vt, t0 = log(air.boot$t0[1]), t = log(air.boot$t[, 1])) Intervals : Level Normal Basic 95% ( 4.036, 5.401 ) ( 4.097, 5.481 ) Level Studentized Percentile 95% ( 3.923, 5.742 ) ( 3.885, 5.269 ) Calculations and Intervals on Original Scale