Examples for 'broom::tidy.multinom'


Tidying methods for multinomial logistic regression models

Aliases: tidy.multinom multinom_tidiers nnet_tidiers

Keywords:

### ** Examples


# feel free to ignore the following line—it allows {broom} to supply 
# examples without requiring the model-supplying package to be installed.
if (requireNamespace("nnet", quietly = TRUE)) {
  if (requireNamespace("MASS", quietly = TRUE)) {

# load libraries for models and data
library(nnet)
library(MASS)

example(birthwt)

bwt.mu <- multinom(low ~ ., bwt)

tidy(bwt.mu)
glance(bwt.mu)

# or, for output from a multinomial logistic regression
fit.gear <- multinom(gear ~ mpg + factor(am), data = mtcars)
tidy(fit.gear)
glance(fit.gear)

  }
}
Attaching package: 'MASS'
The following object is masked from 'package:rcloud.support':

    select
brthwt> bwt <- with(birthwt, {
brthwt+ race <- factor(race, labels = c("white", "black", "other"))
brthwt+ ptd <- factor(ptl > 0)
brthwt+ ftv <- factor(ftv)
brthwt+ levels(ftv)[-(1:2)] <- "2+"
brthwt+ data.frame(low = factor(low), age, lwt, race, smoke = (smoke > 0),
brthwt+            ptd, ht = (ht > 0), ui = (ui > 0), ftv)
brthwt+ })

brthwt> options(contrasts = c("contr.treatment", "contr.poly"))

brthwt> glm(low ~ ., binomial, bwt)

Call:  glm(formula = low ~ ., family = binomial, data = bwt)

Coefficients:
(Intercept)          age          lwt    raceblack    raceother    smokeTRUE  
    0.82302     -0.03723     -0.01565      1.19241      0.74068      0.75553  
    ptdTRUE       htTRUE       uiTRUE         ftv1        ftv2+  
    1.34376      1.91317      0.68020     -0.43638      0.17901  

Degrees of Freedom: 188 Total (i.e. Null);  178 Residual
Null Deviance:	    234.7 
Residual Deviance: 195.5 	AIC: 217.5
# weights:  12 (11 variable)
initial  value 131.004817 
iter  10 value 98.029803
final  value 97.737759 
converged
# weights:  12 (6 variable)
initial  value 35.155593 
iter  10 value 14.156582
iter  20 value 14.031881
iter  30 value 14.025659
iter  40 value 14.021414
iter  50 value 14.019824
iter  60 value 14.019278
iter  70 value 14.018601
iter  80 value 14.018282
iter  80 value 14.018282
iter  90 value 14.017126
final  value 14.015374 
converged
# A tibble: 1 × 4
    edf deviance   AIC  nobs
  <dbl>    <dbl> <dbl> <int>
1     6     28.0  40.0    32

[Package broom version 0.8.0 Index]