Aliases: tidy.rqs rqs_tidiers
Keywords:
### ** Examples # feel free to ignore the following line—it allows {broom} to supply # examples without requiring the model-supplying package to be installed. if (requireNamespace("quantreg", quietly = TRUE)) { # load modeling library and data library(quantreg) data(stackloss) # median (l1) regression fit for the stackloss data. mod1 <- rq(stack.loss ~ stack.x, .5) # weighted sample median mod2 <- rq(rnorm(50) ~ 1, weights = runif(50)) # summarize model fit with tidiers tidy(mod1) glance(mod1) augment(mod1) tidy(mod2) glance(mod2) augment(mod2) # varying tau to generate an rqs object mod3 <- rq(stack.loss ~ stack.x, tau = c(.25, .5)) tidy(mod3) augment(mod3) # glance cannot handle rqs objects like `mod3`--use a purrr # `map`-based workflow instead }
# A tibble: 42 × 5 stack.loss stack.x[,"Air.Flow"] [,"Water.Temp"] .tau .resid .fitted <dbl> <dbl> <dbl> <chr> <dbl> <dbl> 1 42 80 27 0.25 1.10e+ 1 31.0 2 42 80 27 0.5 5.06e+ 0 36.9 3 37 80 27 0.25 6.00e+ 0 31.0 4 37 80 27 0.5 -1.42e-14 37 5 37 75 25 0.25 1.05e+ 1 26.5 6 37 75 25 0.5 5.43e+ 0 31.6 7 28 62 24 0.25 9.00e+ 0 19 8 28 62 24 0.5 7.63e+ 0 20.4 9 18 62 22 0.25 1.00e+ 0 17.0 10 18 62 22 0.5 -1.22e+ 0 19.2 # … with 32 more rows, and 1 more variable: stack.x[3] <dbl>