Aliases: eff_size
Keywords:
### ** Examples fiber.lm <- lm(strength ~ diameter + machine, data = fiber) emm <- emmeans(fiber.lm, "machine") eff_size(emm, sigma = sigma(fiber.lm), edf = df.residual(fiber.lm))
contrast effect.size SE df lower.CL upper.CL A - B -0.650 0.650 11 -2.081 0.781 A - C 0.993 0.726 11 -0.604 2.590 B - C 1.643 0.800 11 -0.118 3.405 sigma used for effect sizes: 1.595 Confidence level used: 0.95
# or equivalently: eff_size(pairs(emm), sigma(fiber.lm), df.residual(fiber.lm), method = "identity")
contrast effect.size SE df lower.CL upper.CL (A - B) -0.650 0.650 11 -2.081 0.781 (A - C) 0.993 0.726 11 -0.604 2.590 (B - C) 1.643 0.800 11 -0.118 3.405 sigma used for effect sizes: 1.595 Confidence level used: 0.95
### Mixed model example: if (require(nlme)) withAutoprint({ Oats.lme <- lme(yield ~ Variety + factor(nitro), random = ~ 1 | Block / Variety, data = Oats) # Combine variance estimates VarCorr(Oats.lme) (totSD <- sqrt(214.4724 + 109.6931 + 162.5590)) # I figure edf is somewhere between 5 (Blocks df) and 51 (Resid df) emmV <- emmeans(Oats.lme, ~ Variety) eff_size(emmV, sigma = totSD, edf = 5) eff_size(emmV, sigma = totSD, edf = 51) }, spaced = TRUE)
> Oats.lme <- lme(yield ~ Variety + factor(nitro), random = ~1 | Block/Variety, + data = Oats) > VarCorr(Oats.lme) Variance StdDev Block = pdLogChol(1) (Intercept) 214.4724 14.64488 Variety = pdLogChol(1) (Intercept) 109.6931 10.47345 Residual 162.5590 12.74986 > (totSD <- sqrt(214.4724 + 109.6931 + 162.559)) [1] 22.06183 > emmV <- emmeans(Oats.lme, ~Variety) > eff_size(emmV, sigma = totSD, edf = 5) contrast effect.size SE df lower.CL upper.CL Golden Rain - Marvellous -0.240 0.330 5 -1.087 0.608 Golden Rain - Victory 0.312 0.336 5 -0.551 1.174 Marvellous - Victory 0.551 0.365 5 -0.387 1.490 Results are averaged over the levels of: nitro sigma used for effect sizes: 22.06 Degrees-of-freedom method: inherited from containment when re-gridding Confidence level used: 0.95 > eff_size(emmV, sigma = totSD, edf = 51) contrast effect.size SE df lower.CL upper.CL Golden Rain - Marvellous -0.240 0.322 5 -1.067 0.587 Golden Rain - Victory 0.312 0.322 5 -0.517 1.140 Marvellous - Victory 0.551 0.325 5 -0.285 1.388 Results are averaged over the levels of: nitro sigma used for effect sizes: 22.06 Degrees-of-freedom method: inherited from containment when re-gridding Confidence level used: 0.95
# Multivariate model for the same data: MOats.lm <- lm(yield ~ Variety, data = MOats) eff_size(emmeans(MOats.lm, "Variety"), sigma = sqrt(mean(sigma(MOats.lm)^2)), # RMS of sigma() edf = df.residual(MOats.lm))
contrast effect.size SE df lower.CL upper.CL Golden Rain - Marvellous -0.237 0.496 15 -1.295 0.82 Golden Rain - Victory 0.308 0.498 15 -0.752 1.37 Marvellous - Victory 0.545 0.504 15 -0.529 1.62 Results are averaged over the levels of: rep.meas sigma used for effect sizes: 22.31 Confidence level used: 0.95