## ---- echo = FALSE, results = "hide", message = FALSE--------------------------------------------- require("emmeans") options(show.signif.stars = FALSE, width = 100) knitr::opts_chunk$set(fig.width = 4.5, class.output = "ro") ## ------------------------------------------------------------------------------------------------- Oats.lmer <- lme4::lmer(yield ~ Variety + factor(nitro) + (1|Block/Variety), data = nlme::Oats, subset = -c(1,2,3,5,8,13,21,34,55)) ## ------------------------------------------------------------------------------------------------- Oats.emm.n <- emmeans(Oats.lmer, "nitro") Oats.emm.n ## ------------------------------------------------------------------------------------------------- emmeans(Oats.lmer, "nitro", lmer.df = "satterthwaite") ## ------------------------------------------------------------------------------------------------- emmeans(Oats.lmer, "nitro", lmer.df = "asymptotic") ## ------------------------------------------------------------------------------------------------- contrast(Oats.emm.n, "poly") ## ------------------------------------------------------------------------------------------------- emmeans(Oats.lmer, pairwise ~ Variety) ## ------------------------------------------------------------------------------------------------- ins <- data.frame( n = c(500, 1200, 100, 400, 500, 300), size = factor(rep(1:3,2), labels = c("S","M","L")), age = factor(rep(1:2, each = 3)), claims = c(42, 37, 1, 101, 73, 14)) ins.glm <- glm(claims ~ size + age + offset(log(n)), data = ins, family = "poisson") ## ------------------------------------------------------------------------------------------------- ref_grid(ins.glm) ## ------------------------------------------------------------------------------------------------- emmeans(ins.glm, "size", type = "response") ## ------------------------------------------------------------------------------------------------- emmeans(ins.glm, "size", type = "response", offset = 0) ## ----eval = FALSE--------------------------------------------------------------------------------- # emmeans(ins.glm, "size", type = "response", at = list(n = 1)) ## ----eval = FALSE--------------------------------------------------------------------------------- # emmeans(ins.glm, "size", type = "response", offset = log(100)) ## ------------------------------------------------------------------------------------------------- require("ordinal") wine.clm <- clm(rating ~ temp + contact, scale = ~ judge, data = wine, link = "probit") ## ------------------------------------------------------------------------------------------------- emmeans(wine.clm, list(pairwise ~ temp, pairwise ~ contact)) ## ------------------------------------------------------------------------------------------------- tmp <- ref_grid(wine.clm, mode = "lin") tmp ## ------------------------------------------------------------------------------------------------- emmeans(tmp, "temp") ## ------------------------------------------------------------------------------------------------- emmeans(wine.clm, ~ temp, mode = "exc.prob", at = list(cut = "3|4")) ## ------------------------------------------------------------------------------------------------- emmeans(wine.clm, ~ rating | temp, mode = "prob") ## ------------------------------------------------------------------------------------------------- emmeans(wine.clm, "temp", mode = "mean.class") ## ------------------------------------------------------------------------------------------------- summary(ref_grid(wine.clm, mode = "scale"), type = "response") ## ----eval = FALSE--------------------------------------------------------------------------------- # cbpp <- transform(lme4::cbpp, unit = 1:56) # require("bayestestR") # options(contrasts = c("contr.bayes", "contr.poly")) # cbpp.rstan <- rstanarm::stan_glmer( # cbind(incidence, size - incidence) ~ period + (1|herd) + (1|unit), # data = cbpp, family = binomial, # prior = student_t(df = 5, location = 0, scale = 2, autoscale = FALSE), # chains = 2, cores = 1, seed = 2021.0120, iter = 1000) # cbpp_prior.rstan <- update(cbpp.rstan, prior_PD = TRUE) # cbpp.rg <- ref_grid(cbpp.rstan) # cbpp_prior.rg <- ref_grid(cbpp_prior.rstan) ## ----echo = FALSE--------------------------------------------------------------------------------- cbpp.rg <- do.call(emmobj, readRDS(system.file("extdata", "cbpprglist", package = "emmeans"))) cbpp_prior.rg <- do.call(emmobj, readRDS(system.file("extdata", "cbpppriorrglist", package = "emmeans"))) cbpp.sigma <- readRDS(system.file("extdata", "cbppsigma", package = "emmeans")) ## ------------------------------------------------------------------------------------------------- cbpp.rg ## ------------------------------------------------------------------------------------------------- summary(cbpp.rg) ## ------------------------------------------------------------------------------------------------- require("coda") summary(as.mcmc(cbpp.rg)) ## ------------------------------------------------------------------------------------------------- bayestestR::bayesfactor_parameters(pairs(cbpp.rg), prior = pairs(cbpp_prior.rg)) bayestestR::p_rope(pairs(cbpp.rg), range = c(-0.25, 0.25)) ## ----eval = FALSE--------------------------------------------------------------------------------- # cbpp.sigma = as.matrix(cbpp.rstan$stanfit)[, 78:79] ## ------------------------------------------------------------------------------------------------- head(cbpp.sigma) ## ------------------------------------------------------------------------------------------------- totSD <- sqrt(apply(cbpp.sigma^2, 1, sum)) cbpp.rgrd <- regrid(cbpp.rg, bias.adjust = TRUE, sigma = totSD) summary(cbpp.rgrd) ## ------------------------------------------------------------------------------------------------- bayesplot::mcmc_areas(as.mcmc(cbpp.rgrd)) ## ------------------------------------------------------------------------------------------------- contrast(cbpp.rgrd, "consec", reverse = TRUE) ## ------------------------------------------------------------------------------------------------- set.seed(2019.0605) cbpp.preds <- as.mcmc(cbpp.rgrd, likelihood = "binomial", trials = 25) bayesplot::mcmc_hist(cbpp.preds, binwidth = 1)