Aliases: geom_boxplot stat_boxplot
Keywords:
### ** Examples p <- ggplot(mpg, aes(class, hwy)) p + geom_boxplot()
# Orientation follows the discrete axis ggplot(mpg, aes(hwy, class)) + geom_boxplot()
p + geom_boxplot(notch = TRUE)
p + geom_boxplot(varwidth = TRUE)
p + geom_boxplot(fill = "white", colour = "#3366FF")
# By default, outlier points match the colour of the box. Use # outlier.colour to override p + geom_boxplot(outlier.colour = "red", outlier.shape = 1)
# Remove outliers when overlaying boxplot with original data points p + geom_boxplot(outlier.shape = NA) + geom_jitter(width = 0.2)
# Boxplots are automatically dodged when any aesthetic is a factor p + geom_boxplot(aes(colour = drv))
# You can also use boxplots with continuous x, as long as you supply # a grouping variable. cut_width is particularly useful ggplot(diamonds, aes(carat, price)) + geom_boxplot()
Warning: Continuous x aesthetic -- did you forget aes(group=...)?
ggplot(diamonds, aes(carat, price)) + geom_boxplot(aes(group = cut_width(carat, 0.25)))
# Adjust the transparency of outliers using outlier.alpha ggplot(diamonds, aes(carat, price)) + geom_boxplot(aes(group = cut_width(carat, 0.25)), outlier.alpha = 0.1)
## No test: # It's possible to draw a boxplot with your own computations if you # use stat = "identity": y <- rnorm(100) df <- data.frame( x = 1, y0 = min(y), y25 = quantile(y, 0.25), y50 = median(y), y75 = quantile(y, 0.75), y100 = max(y) ) ggplot(df, aes(x)) + geom_boxplot( aes(ymin = y0, lower = y25, middle = y50, upper = y75, ymax = y100), stat = "identity" )
## End(No test)