Aliases: scg_group scgGrouping
Keywords: graphs
### ** Examples ## We are not running these examples any more, because they ## take a long time to run and this is against the CRAN repository ## policy. Copy and paste them by hand to your R prompt if ## you want to run them. ## Not run: ##D # eigenvectors of a random symmetric matrix ##D M <- matrix(rexp(10^6), 10^3, 10^3) ##D M <- (M + t(M))/2 ##D V <- eigen(M, symmetric=TRUE)$vectors[,c(1,2)] ##D ##D # displays size of the groups in the final partition ##D gr <- scg_group(V, nt=c(2,3)) ##D col <- rainbow(max(gr)) ##D plot(table(gr), col=col, main="Group size", xlab="group", ylab="size") ##D ##D ## comparison with the grouping obtained by kmeans ##D ## for a partition of same size ##D gr.km <- kmeans(V,centers=max(gr), iter.max=100, nstart=100)$cluster ##D op <- par(mfrow=c(1,2)) ##D plot(V[,1], V[,2], col=col[gr], ##D main = "SCG grouping", ##D xlab = "1st eigenvector", ##D ylab = "2nd eigenvector") ##D plot(V[,1], V[,2], col=col[gr.km], ##D main = "K-means grouping", ##D xlab = "1st eigenvector", ##D ylab = "2nd eigenvector") ##D par(op) ##D ## kmeans disregards the first eigenvector as it ##D ## spreads a much smaller range of values than the second one ##D ##D ### comparing optimal and k-means solutions ##D ### in the one-dimensional case. ##D x <- rexp(2000, 2) ##D gr.true <- scg_group(cbind(x), 100) ##D gr.km <- kmeans(x, 100, 100, 300)$cluster ##D scg_eps(cbind(x), gr.true) ##D scg_eps(cbind(x), gr.km) ## End(Not run)