Aliases: summary.glht confint.glht coef.glht vcov.glht plot.glht plot.confint.glht univariate adjusted Ftest Chisqtest adjusted_calpha univariate_calpha
Keywords: htest
### ** Examples ### set up a two-way ANOVA amod <- aov(breaks ~ wool + tension, data = warpbreaks) ### set up all-pair comparisons for factor `tension' wht <- glht(amod, linfct = mcp(tension = "Tukey")) ### 95% simultaneous confidence intervals plot(print(confint(wht)))
Simultaneous Confidence Intervals Multiple Comparisons of Means: Tukey Contrasts Fit: aov(formula = breaks ~ wool + tension, data = warpbreaks) Quantile = 2.4153 95% family-wise confidence level Linear Hypotheses: Estimate lwr upr M - L == 0 -10.0000 -19.3529 -0.6471 H - L == 0 -14.7222 -24.0751 -5.3694 H - M == 0 -4.7222 -14.0751 4.6306
### the same (for balanced designs only) TukeyHSD(amod, "tension")
Tukey multiple comparisons of means 95% family-wise confidence level Fit: aov(formula = breaks ~ wool + tension, data = warpbreaks) $tension diff lwr upr p adj M-L -10.000000 -19.35342 -0.6465793 0.0336262 H-L -14.722222 -24.07564 -5.3688015 0.0011218 H-M -4.722222 -14.07564 4.6311985 0.4474210
### corresponding adjusted p values summary(wht)
Simultaneous Tests for General Linear Hypotheses Multiple Comparisons of Means: Tukey Contrasts Fit: aov(formula = breaks ~ wool + tension, data = warpbreaks) Linear Hypotheses: Estimate Std. Error t value Pr(>|t|) M - L == 0 -10.000 3.872 -2.582 0.03371 * H - L == 0 -14.722 3.872 -3.802 0.00113 ** H - M == 0 -4.722 3.872 -1.219 0.44741 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Adjusted p values reported -- single-step method)
### all means for levels of `tension' amod <- aov(breaks ~ tension, data = warpbreaks) glht(amod, linfct = matrix(c(1, 0, 0, 1, 1, 0, 1, 0, 1), byrow = TRUE, ncol = 3))
General Linear Hypotheses Linear Hypotheses: Estimate 1 == 0 36.39 2 == 0 26.39 3 == 0 21.67
### confidence bands for a simple linear model, `cars' data plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)", las = 1) ### fit linear model and add regression line to plot lmod <- lm(dist ~ speed, data = cars) abline(lmod) ### a grid of speeds speeds <- seq(from = min(cars$speed), to = max(cars$speed), length = 10) ### linear hypotheses: 10 selected points on the regression line != 0 K <- cbind(1, speeds) ### set up linear hypotheses cht <- glht(lmod, linfct = K) ### confidence intervals, i.e., confidence bands, and add them plot cci <- confint(cht) lines(speeds, cci$confint[,"lwr"], col = "blue") lines(speeds, cci$confint[,"upr"], col = "blue")
### simultaneous p values for parameters in a Cox model if (require("survival") && require("MASS")) { data("leuk", package = "MASS") leuk.cox <- coxph(Surv(time) ~ ag + log(wbc), data = leuk) ### set up linear hypotheses lht <- glht(leuk.cox, linfct = diag(length(coef(leuk.cox)))) ### adjusted p values print(summary(lht)) }
Simultaneous Tests for General Linear Hypotheses Fit: coxph(formula = Surv(time) ~ ag + log(wbc), data = leuk) Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) 1 == 0 -1.0691 0.4293 -2.490 0.0253 * 2 == 0 0.3677 0.1360 2.703 0.0137 * --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Adjusted p values reported -- single-step method)