Examples for 'nloptr::nloptr.print.options'


Print description of nloptr options

Aliases: nloptr.print.options

Keywords: interface optimize

### ** Examples


library('nloptr')
nloptr.print.options()
algorithm
	possible values: NLOPT_GN_DIRECT, NLOPT_GN_DIRECT_L,
	                 NLOPT_GN_DIRECT_L_RAND, NLOPT_GN_DIRECT_NOSCAL,
	                 NLOPT_GN_DIRECT_L_NOSCAL,
	                 NLOPT_GN_DIRECT_L_RAND_NOSCAL,
	                 NLOPT_GN_ORIG_DIRECT, NLOPT_GN_ORIG_DIRECT_L,
	                 NLOPT_GD_STOGO, NLOPT_GD_STOGO_RAND,
	                 NLOPT_LD_SLSQP, NLOPT_LD_LBFGS_NOCEDAL,
	                 NLOPT_LD_LBFGS, NLOPT_LN_PRAXIS, NLOPT_LD_VAR1,
	                 NLOPT_LD_VAR2, NLOPT_LD_TNEWTON,
	                 NLOPT_LD_TNEWTON_RESTART,
	                 NLOPT_LD_TNEWTON_PRECOND,
	                 NLOPT_LD_TNEWTON_PRECOND_RESTART,
	                 NLOPT_GN_CRS2_LM, NLOPT_GN_MLSL, NLOPT_GD_MLSL,
	                 NLOPT_GN_MLSL_LDS, NLOPT_GD_MLSL_LDS,
	                 NLOPT_LD_MMA, NLOPT_LD_CCSAQ, NLOPT_LN_COBYLA,
	                 NLOPT_LN_NEWUOA, NLOPT_LN_NEWUOA_BOUND,
	                 NLOPT_LN_NELDERMEAD, NLOPT_LN_SBPLX,
	                 NLOPT_LN_AUGLAG, NLOPT_LD_AUGLAG,
	                 NLOPT_LN_AUGLAG_EQ, NLOPT_LD_AUGLAG_EQ,
	                 NLOPT_LN_BOBYQA, NLOPT_GN_ISRES
	default value:   none

	This option is required. Check the NLopt website for a description of
	the algorithms.

stopval
	possible values: -Inf <= stopval <= Inf
	default value:   -Inf

	Stop minimization when an objective value <= stopval is found.
	Setting stopval to -Inf disables this stopping criterion (default).

ftol_rel
	possible values: ftol_rel > 0
	default value:   0.0

	Stop when an optimization step (or an estimate of the optimum)
	changes the objective function value by less than ftol_rel multiplied
	by the absolute value of the function value. If there is any chance
	that your optimum function value is close to zero, you might want to
	set an absolute tolerance with ftol_abs as well. Criterion is
	disabled if ftol_rel is non-positive (default).

ftol_abs
	possible values: ftol_abs > 0
	default value:   0.0

	Stop when an optimization step (or an estimate of the optimum)
	changes the function value by less than ftol_abs. Criterion is
	disabled if ftol_abs is non-positive (default).

xtol_rel
	possible values: xtol_rel > 0
	default value:   1.0e-04

	Stop when an optimization step (or an estimate of the optimum)
	changes every parameter by less than xtol_rel multiplied by the
	absolute value of the parameter. If there is any chance that an
	optimal parameter is close to zero, you might want to set an absolute
	tolerance with xtol_abs as well. Criterion is disabled if xtol_rel is
	non-positive.

xtol_abs
	possible values: xtol_abs > 0
	default value:   rep( 0.0, length(x0) )

	xtol_abs is a vector of length n (the number of elements in x) giving
	the tolerances: stop when an optimization step (or an estimate of the
	optimum) changes every parameter x[i] by less than xtol_abs[i].
	Criterion is disabled if all elements of xtol_abs are non-positive
	(default).

maxeval
	possible values: maxeval is a positive integer
	default value:   100

	Stop when the number of function evaluations exceeds maxeval. This is
	not a strict maximum: the number of function evaluations may exceed
	maxeval slightly, depending upon the algorithm. Criterion is disabled
	if maxeval is non-positive.

maxtime
	possible values: maxtime > 0
	default value:   -1.0

	Stop when the optimization time (in seconds) exceeds maxtime. This is
	not a strict maximum: the time may exceed maxtime slightly, depending
	upon the algorithm and on how slow your function evaluation is.
	Criterion is disabled if maxtime is non-positive (default).

tol_constraints_ineq
	possible values: tol_constraints_ineq > 0.0
	default value:   rep( 1e-8, num_constraints_ineq )

	The parameter tol_constraints_ineq is a vector of tolerances. Each
	tolerance corresponds to one of the inequality constraints. The
	tolerance is used for the purpose of stopping criteria only: a point
	x is considered feasible for judging whether to stop the optimization
	if eval_g_ineq(x) <= tol. A tolerance of zero means that NLopt will
	try not to consider any x to be converged unless eval_g_ineq(x) is
	strictly non-positive; generally, at least a small positive tolerance
	is advisable to reduce sensitivity to rounding errors. By default the
	tolerances for all inequality constraints are set to 1e-8.

tol_constraints_eq
	possible values: tol_constraints_eq > 0.0
	default value:   rep( 1e-8, num_constraints_eq )

	The parameter tol_constraints_eq is a vector of tolerances. Each
	tolerance corresponds to one of the equality constraints. The
	tolerance is used for the purpose of stopping criteria only: a point
	x is considered feasible for judging whether to stop the optimization
	if abs( eval_g_ineq(x) ) <= tol. For equality constraints, a small
	positive tolerance is strongly advised in order to allow NLopt to
	converge even if the equality constraint is slightly nonzero. By
	default the tolerances for all equality constraints are set to 1e-8.

print_level
	possible values: 0, 1, 2, or 3
	default value:   0

	The option print_level controls how much output is shown during the
	optimization process. Possible values: 0 (default): no output; 1:
	show iteration number and value of objective function; 2: 1 + show
	value of (in)equalities; 3: 2 + show value of controls.

check_derivatives
	possible values: TRUE or FALSE
	default value:   FALSE

	The option check_derivatives can be activated to compare the
	user-supplied analytic gradients with finite difference
	approximations.

check_derivatives_tol
	possible values: check_derivatives_tol > 0.0
	default value:   1e-04

	The option check_derivatives_tol determines when a difference between
	an analytic gradient and its finite difference approximation is
	flagged as an error.

check_derivatives_print
	possible values: 'none', 'all', 'errors',
	default value:   all

	The option check_derivatives_print controls the output of the
	derivative checker (if check_derivatives==TRUE). All comparisons are
	shown ('all'), only those comparisions that resulted in an error
	('error'), or only the number of errors is shown ('none').

print_options_doc
	possible values: TRUE or FALSE
	default value:   FALSE

	If TRUE, a description of all options and their current and default
	values is printed to the screen.

population
	possible values: population is a positive integer
	default value:   0

	Several of the stochastic search algorithms (e.g., CRS, MLSL, and
	ISRES) start by generating some initial population of random points
	x. By default, this initial population size is chosen heuristically
	in some algorithm-specific way, but the initial population can by
	changed by setting a positive integer value for population. A
	population of zero implies that the heuristic default will be used.

ranseed
	possible values: ranseed is a positive integer
	default value:   0

	For stochastic optimization algorithms, pseudorandom numbers are
	generated. Set the random seed using ranseed if you want to use a
	'deterministic' sequence of pseudorandom numbers, i.e. the same
	sequence from run to run. If ranseed is 0 (default), the seed for the
	random numbers is generated from the system time, so that you will
	get a different sequence of pseudorandom numbers each time you run
	your program.
nloptr.print.options( opts.show = c("algorithm", "check_derivatives") )
algorithm
	possible values: NLOPT_GN_DIRECT, NLOPT_GN_DIRECT_L,
	                 NLOPT_GN_DIRECT_L_RAND, NLOPT_GN_DIRECT_NOSCAL,
	                 NLOPT_GN_DIRECT_L_NOSCAL,
	                 NLOPT_GN_DIRECT_L_RAND_NOSCAL,
	                 NLOPT_GN_ORIG_DIRECT, NLOPT_GN_ORIG_DIRECT_L,
	                 NLOPT_GD_STOGO, NLOPT_GD_STOGO_RAND,
	                 NLOPT_LD_SLSQP, NLOPT_LD_LBFGS_NOCEDAL,
	                 NLOPT_LD_LBFGS, NLOPT_LN_PRAXIS, NLOPT_LD_VAR1,
	                 NLOPT_LD_VAR2, NLOPT_LD_TNEWTON,
	                 NLOPT_LD_TNEWTON_RESTART,
	                 NLOPT_LD_TNEWTON_PRECOND,
	                 NLOPT_LD_TNEWTON_PRECOND_RESTART,
	                 NLOPT_GN_CRS2_LM, NLOPT_GN_MLSL, NLOPT_GD_MLSL,
	                 NLOPT_GN_MLSL_LDS, NLOPT_GD_MLSL_LDS,
	                 NLOPT_LD_MMA, NLOPT_LD_CCSAQ, NLOPT_LN_COBYLA,
	                 NLOPT_LN_NEWUOA, NLOPT_LN_NEWUOA_BOUND,
	                 NLOPT_LN_NELDERMEAD, NLOPT_LN_SBPLX,
	                 NLOPT_LN_AUGLAG, NLOPT_LD_AUGLAG,
	                 NLOPT_LN_AUGLAG_EQ, NLOPT_LD_AUGLAG_EQ,
	                 NLOPT_LN_BOBYQA, NLOPT_GN_ISRES
	default value:   none

	This option is required. Check the NLopt website for a description of
	the algorithms.

check_derivatives
	possible values: TRUE or FALSE
	default value:   FALSE

	The option check_derivatives can be activated to compare the
	user-supplied analytic gradients with finite difference
	approximations.
opts <- list("algorithm"="NLOPT_LD_LBFGS",
             "xtol_rel"=1.0e-8)
nloptr.print.options( opts.user = opts )
algorithm
	possible values: NLOPT_GN_DIRECT, NLOPT_GN_DIRECT_L,
	                 NLOPT_GN_DIRECT_L_RAND, NLOPT_GN_DIRECT_NOSCAL,
	                 NLOPT_GN_DIRECT_L_NOSCAL,
	                 NLOPT_GN_DIRECT_L_RAND_NOSCAL,
	                 NLOPT_GN_ORIG_DIRECT, NLOPT_GN_ORIG_DIRECT_L,
	                 NLOPT_GD_STOGO, NLOPT_GD_STOGO_RAND,
	                 NLOPT_LD_SLSQP, NLOPT_LD_LBFGS_NOCEDAL,
	                 NLOPT_LD_LBFGS, NLOPT_LN_PRAXIS, NLOPT_LD_VAR1,
	                 NLOPT_LD_VAR2, NLOPT_LD_TNEWTON,
	                 NLOPT_LD_TNEWTON_RESTART,
	                 NLOPT_LD_TNEWTON_PRECOND,
	                 NLOPT_LD_TNEWTON_PRECOND_RESTART,
	                 NLOPT_GN_CRS2_LM, NLOPT_GN_MLSL, NLOPT_GD_MLSL,
	                 NLOPT_GN_MLSL_LDS, NLOPT_GD_MLSL_LDS,
	                 NLOPT_LD_MMA, NLOPT_LD_CCSAQ, NLOPT_LN_COBYLA,
	                 NLOPT_LN_NEWUOA, NLOPT_LN_NEWUOA_BOUND,
	                 NLOPT_LN_NELDERMEAD, NLOPT_LN_SBPLX,
	                 NLOPT_LN_AUGLAG, NLOPT_LD_AUGLAG,
	                 NLOPT_LN_AUGLAG_EQ, NLOPT_LD_AUGLAG_EQ,
	                 NLOPT_LN_BOBYQA, NLOPT_GN_ISRES
	default value:   none
	current value:   NLOPT_LD_LBFGS

	This option is required. Check the NLopt website for a description of
	the algorithms.

stopval
	possible values: -Inf <= stopval <= Inf
	default value:   -Inf
	current value:   (default)

	Stop minimization when an objective value <= stopval is found.
	Setting stopval to -Inf disables this stopping criterion (default).

ftol_rel
	possible values: ftol_rel > 0
	default value:   0.0
	current value:   (default)

	Stop when an optimization step (or an estimate of the optimum)
	changes the objective function value by less than ftol_rel multiplied
	by the absolute value of the function value. If there is any chance
	that your optimum function value is close to zero, you might want to
	set an absolute tolerance with ftol_abs as well. Criterion is
	disabled if ftol_rel is non-positive (default).

ftol_abs
	possible values: ftol_abs > 0
	default value:   0.0
	current value:   (default)

	Stop when an optimization step (or an estimate of the optimum)
	changes the function value by less than ftol_abs. Criterion is
	disabled if ftol_abs is non-positive (default).

xtol_rel
	possible values: xtol_rel > 0
	default value:   1.0e-04
	current value:   1e-08

	Stop when an optimization step (or an estimate of the optimum)
	changes every parameter by less than xtol_rel multiplied by the
	absolute value of the parameter. If there is any chance that an
	optimal parameter is close to zero, you might want to set an absolute
	tolerance with xtol_abs as well. Criterion is disabled if xtol_rel is
	non-positive.

xtol_abs
	possible values: xtol_abs > 0
	default value:   rep( 0.0, length(x0) )
	current value:   (default)

	xtol_abs is a vector of length n (the number of elements in x) giving
	the tolerances: stop when an optimization step (or an estimate of the
	optimum) changes every parameter x[i] by less than xtol_abs[i].
	Criterion is disabled if all elements of xtol_abs are non-positive
	(default).

maxeval
	possible values: maxeval is a positive integer
	default value:   100
	current value:   (default)

	Stop when the number of function evaluations exceeds maxeval. This is
	not a strict maximum: the number of function evaluations may exceed
	maxeval slightly, depending upon the algorithm. Criterion is disabled
	if maxeval is non-positive.

maxtime
	possible values: maxtime > 0
	default value:   -1.0
	current value:   (default)

	Stop when the optimization time (in seconds) exceeds maxtime. This is
	not a strict maximum: the time may exceed maxtime slightly, depending
	upon the algorithm and on how slow your function evaluation is.
	Criterion is disabled if maxtime is non-positive (default).

tol_constraints_ineq
	possible values: tol_constraints_ineq > 0.0
	default value:   rep( 1e-8, num_constraints_ineq )
	current value:   (default)

	The parameter tol_constraints_ineq is a vector of tolerances. Each
	tolerance corresponds to one of the inequality constraints. The
	tolerance is used for the purpose of stopping criteria only: a point
	x is considered feasible for judging whether to stop the optimization
	if eval_g_ineq(x) <= tol. A tolerance of zero means that NLopt will
	try not to consider any x to be converged unless eval_g_ineq(x) is
	strictly non-positive; generally, at least a small positive tolerance
	is advisable to reduce sensitivity to rounding errors. By default the
	tolerances for all inequality constraints are set to 1e-8.

tol_constraints_eq
	possible values: tol_constraints_eq > 0.0
	default value:   rep( 1e-8, num_constraints_eq )
	current value:   (default)

	The parameter tol_constraints_eq is a vector of tolerances. Each
	tolerance corresponds to one of the equality constraints. The
	tolerance is used for the purpose of stopping criteria only: a point
	x is considered feasible for judging whether to stop the optimization
	if abs( eval_g_ineq(x) ) <= tol. For equality constraints, a small
	positive tolerance is strongly advised in order to allow NLopt to
	converge even if the equality constraint is slightly nonzero. By
	default the tolerances for all equality constraints are set to 1e-8.

print_level
	possible values: 0, 1, 2, or 3
	default value:   0
	current value:   (default)

	The option print_level controls how much output is shown during the
	optimization process. Possible values: 0 (default): no output; 1:
	show iteration number and value of objective function; 2: 1 + show
	value of (in)equalities; 3: 2 + show value of controls.

check_derivatives
	possible values: TRUE or FALSE
	default value:   FALSE
	current value:   (default)

	The option check_derivatives can be activated to compare the
	user-supplied analytic gradients with finite difference
	approximations.

check_derivatives_tol
	possible values: check_derivatives_tol > 0.0
	default value:   1e-04
	current value:   (default)

	The option check_derivatives_tol determines when a difference between
	an analytic gradient and its finite difference approximation is
	flagged as an error.

check_derivatives_print
	possible values: 'none', 'all', 'errors',
	default value:   all
	current value:   (default)

	The option check_derivatives_print controls the output of the
	derivative checker (if check_derivatives==TRUE). All comparisons are
	shown ('all'), only those comparisions that resulted in an error
	('error'), or only the number of errors is shown ('none').

print_options_doc
	possible values: TRUE or FALSE
	default value:   FALSE
	current value:   (default)

	If TRUE, a description of all options and their current and default
	values is printed to the screen.

population
	possible values: population is a positive integer
	default value:   0
	current value:   (default)

	Several of the stochastic search algorithms (e.g., CRS, MLSL, and
	ISRES) start by generating some initial population of random points
	x. By default, this initial population size is chosen heuristically
	in some algorithm-specific way, but the initial population can by
	changed by setting a positive integer value for population. A
	population of zero implies that the heuristic default will be used.

ranseed
	possible values: ranseed is a positive integer
	default value:   0
	current value:   (default)

	For stochastic optimization algorithms, pseudorandom numbers are
	generated. Set the random seed using ranseed if you want to use a
	'deterministic' sequence of pseudorandom numbers, i.e. the same
	sequence from run to run. If ranseed is 0 (default), the seed for the
	random numbers is generated from the system time, so that you will
	get a different sequence of pseudorandom numbers each time you run
	your program.

[Package nloptr version 2.0.3 Index]