Examples for 'rpart::summary.rpart'


Summarize a Fitted Rpart Object

Aliases: summary.rpart

Keywords: tree

### ** Examples

## a regression tree
z.auto <- rpart(Mileage ~ Weight, car.test.frame)
summary(z.auto)
Call:
rpart(formula = Mileage ~ Weight, data = car.test.frame)
  n= 60 

          CP nsplit rel error   xerror       xstd
1 0.59534912      0 1.0000000 1.040189 0.17983428
2 0.13452819      1 0.4046509 0.578295 0.10544254
3 0.01282843      2 0.2701227 0.431978 0.07766039
4 0.01000000      3 0.2572943 0.438214 0.07768390

Variable importance
Weight 
   100 

Node number 1: 60 observations,    complexity param=0.5953491
  mean=24.58333, MSE=22.57639 
  left son=2 (45 obs) right son=3 (15 obs)
  Primary splits:
      Weight < 2567.5 to the right, improve=0.5953491, (0 missing)

Node number 2: 45 observations,    complexity param=0.1345282
  mean=22.46667, MSE=8.026667 
  left son=4 (22 obs) right son=5 (23 obs)
  Primary splits:
      Weight < 3087.5 to the right, improve=0.5045118, (0 missing)

Node number 3: 15 observations
  mean=30.93333, MSE=12.46222 

Node number 4: 22 observations
  mean=20.40909, MSE=2.78719 

Node number 5: 23 observations,    complexity param=0.01282843
  mean=24.43478, MSE=5.115312 
  left son=10 (15 obs) right son=11 (8 obs)
  Primary splits:
      Weight < 2747.5 to the right, improve=0.1476996, (0 missing)

Node number 10: 15 observations
  mean=23.8, MSE=4.026667 

Node number 11: 8 observations
  mean=25.625, MSE=4.984375 
## a classification tree with multiple variables and surrogate splits.
summary(rpart(Kyphosis ~ Age + Number + Start, data = kyphosis))
Call:
rpart(formula = Kyphosis ~ Age + Number + Start, data = kyphosis)
  n= 81 

          CP nsplit rel error   xerror      xstd
1 0.17647059      0 1.0000000 1.000000 0.2155872
2 0.01960784      1 0.8235294 1.058824 0.2200975
3 0.01000000      4 0.7647059 1.058824 0.2200975

Variable importance
 Start    Age Number 
    64     24     12 

Node number 1: 81 observations,    complexity param=0.1764706
  predicted class=absent   expected loss=0.2098765  P(node) =1
    class counts:    64    17
   probabilities: 0.790 0.210 
  left son=2 (62 obs) right son=3 (19 obs)
  Primary splits:
      Start  < 8.5  to the right, improve=6.762330, (0 missing)
      Number < 5.5  to the left,  improve=2.866795, (0 missing)
      Age    < 39.5 to the left,  improve=2.250212, (0 missing)
  Surrogate splits:
      Number < 6.5  to the left,  agree=0.802, adj=0.158, (0 split)

Node number 2: 62 observations,    complexity param=0.01960784
  predicted class=absent   expected loss=0.09677419  P(node) =0.7654321
    class counts:    56     6
   probabilities: 0.903 0.097 
  left son=4 (29 obs) right son=5 (33 obs)
  Primary splits:
      Start  < 14.5 to the right, improve=1.0205280, (0 missing)
      Age    < 55   to the left,  improve=0.6848635, (0 missing)
      Number < 4.5  to the left,  improve=0.2975332, (0 missing)
  Surrogate splits:
      Number < 3.5  to the left,  agree=0.645, adj=0.241, (0 split)
      Age    < 16   to the left,  agree=0.597, adj=0.138, (0 split)

Node number 3: 19 observations
  predicted class=present  expected loss=0.4210526  P(node) =0.2345679
    class counts:     8    11
   probabilities: 0.421 0.579 

Node number 4: 29 observations
  predicted class=absent   expected loss=0  P(node) =0.3580247
    class counts:    29     0
   probabilities: 1.000 0.000 

Node number 5: 33 observations,    complexity param=0.01960784
  predicted class=absent   expected loss=0.1818182  P(node) =0.4074074
    class counts:    27     6
   probabilities: 0.818 0.182 
  left son=10 (12 obs) right son=11 (21 obs)
  Primary splits:
      Age    < 55   to the left,  improve=1.2467530, (0 missing)
      Start  < 12.5 to the right, improve=0.2887701, (0 missing)
      Number < 3.5  to the right, improve=0.1753247, (0 missing)
  Surrogate splits:
      Start  < 9.5  to the left,  agree=0.758, adj=0.333, (0 split)
      Number < 5.5  to the right, agree=0.697, adj=0.167, (0 split)

Node number 10: 12 observations
  predicted class=absent   expected loss=0  P(node) =0.1481481
    class counts:    12     0
   probabilities: 1.000 0.000 

Node number 11: 21 observations,    complexity param=0.01960784
  predicted class=absent   expected loss=0.2857143  P(node) =0.2592593
    class counts:    15     6
   probabilities: 0.714 0.286 
  left son=22 (14 obs) right son=23 (7 obs)
  Primary splits:
      Age    < 111  to the right, improve=1.71428600, (0 missing)
      Start  < 12.5 to the right, improve=0.79365080, (0 missing)
      Number < 3.5  to the right, improve=0.07142857, (0 missing)

Node number 22: 14 observations
  predicted class=absent   expected loss=0.1428571  P(node) =0.1728395
    class counts:    12     2
   probabilities: 0.857 0.143 

Node number 23: 7 observations
  predicted class=present  expected loss=0.4285714  P(node) =0.08641975
    class counts:     3     4
   probabilities: 0.429 0.571 

[Package rpart version 4.1.19 Index]