Aliases: summary.rpart
Keywords: tree
### ** Examples ## a regression tree z.auto <- rpart(Mileage ~ Weight, car.test.frame) summary(z.auto)
Call: rpart(formula = Mileage ~ Weight, data = car.test.frame) n= 60 CP nsplit rel error xerror xstd 1 0.59534912 0 1.0000000 1.040189 0.17983428 2 0.13452819 1 0.4046509 0.578295 0.10544254 3 0.01282843 2 0.2701227 0.431978 0.07766039 4 0.01000000 3 0.2572943 0.438214 0.07768390 Variable importance Weight 100 Node number 1: 60 observations, complexity param=0.5953491 mean=24.58333, MSE=22.57639 left son=2 (45 obs) right son=3 (15 obs) Primary splits: Weight < 2567.5 to the right, improve=0.5953491, (0 missing) Node number 2: 45 observations, complexity param=0.1345282 mean=22.46667, MSE=8.026667 left son=4 (22 obs) right son=5 (23 obs) Primary splits: Weight < 3087.5 to the right, improve=0.5045118, (0 missing) Node number 3: 15 observations mean=30.93333, MSE=12.46222 Node number 4: 22 observations mean=20.40909, MSE=2.78719 Node number 5: 23 observations, complexity param=0.01282843 mean=24.43478, MSE=5.115312 left son=10 (15 obs) right son=11 (8 obs) Primary splits: Weight < 2747.5 to the right, improve=0.1476996, (0 missing) Node number 10: 15 observations mean=23.8, MSE=4.026667 Node number 11: 8 observations mean=25.625, MSE=4.984375
## a classification tree with multiple variables and surrogate splits. summary(rpart(Kyphosis ~ Age + Number + Start, data = kyphosis))
Call: rpart(formula = Kyphosis ~ Age + Number + Start, data = kyphosis) n= 81 CP nsplit rel error xerror xstd 1 0.17647059 0 1.0000000 1.000000 0.2155872 2 0.01960784 1 0.8235294 1.058824 0.2200975 3 0.01000000 4 0.7647059 1.058824 0.2200975 Variable importance Start Age Number 64 24 12 Node number 1: 81 observations, complexity param=0.1764706 predicted class=absent expected loss=0.2098765 P(node) =1 class counts: 64 17 probabilities: 0.790 0.210 left son=2 (62 obs) right son=3 (19 obs) Primary splits: Start < 8.5 to the right, improve=6.762330, (0 missing) Number < 5.5 to the left, improve=2.866795, (0 missing) Age < 39.5 to the left, improve=2.250212, (0 missing) Surrogate splits: Number < 6.5 to the left, agree=0.802, adj=0.158, (0 split) Node number 2: 62 observations, complexity param=0.01960784 predicted class=absent expected loss=0.09677419 P(node) =0.7654321 class counts: 56 6 probabilities: 0.903 0.097 left son=4 (29 obs) right son=5 (33 obs) Primary splits: Start < 14.5 to the right, improve=1.0205280, (0 missing) Age < 55 to the left, improve=0.6848635, (0 missing) Number < 4.5 to the left, improve=0.2975332, (0 missing) Surrogate splits: Number < 3.5 to the left, agree=0.645, adj=0.241, (0 split) Age < 16 to the left, agree=0.597, adj=0.138, (0 split) Node number 3: 19 observations predicted class=present expected loss=0.4210526 P(node) =0.2345679 class counts: 8 11 probabilities: 0.421 0.579 Node number 4: 29 observations predicted class=absent expected loss=0 P(node) =0.3580247 class counts: 29 0 probabilities: 1.000 0.000 Node number 5: 33 observations, complexity param=0.01960784 predicted class=absent expected loss=0.1818182 P(node) =0.4074074 class counts: 27 6 probabilities: 0.818 0.182 left son=10 (12 obs) right son=11 (21 obs) Primary splits: Age < 55 to the left, improve=1.2467530, (0 missing) Start < 12.5 to the right, improve=0.2887701, (0 missing) Number < 3.5 to the right, improve=0.1753247, (0 missing) Surrogate splits: Start < 9.5 to the left, agree=0.758, adj=0.333, (0 split) Number < 5.5 to the right, agree=0.697, adj=0.167, (0 split) Node number 10: 12 observations predicted class=absent expected loss=0 P(node) =0.1481481 class counts: 12 0 probabilities: 1.000 0.000 Node number 11: 21 observations, complexity param=0.01960784 predicted class=absent expected loss=0.2857143 P(node) =0.2592593 class counts: 15 6 probabilities: 0.714 0.286 left son=22 (14 obs) right son=23 (7 obs) Primary splits: Age < 111 to the right, improve=1.71428600, (0 missing) Start < 12.5 to the right, improve=0.79365080, (0 missing) Number < 3.5 to the right, improve=0.07142857, (0 missing) Node number 22: 14 observations predicted class=absent expected loss=0.1428571 P(node) =0.1728395 class counts: 12 2 probabilities: 0.857 0.143 Node number 23: 7 observations predicted class=present expected loss=0.4285714 P(node) =0.08641975 class counts: 3 4 probabilities: 0.429 0.571