yj_trans {scales} | R Documentation |
The Yeo-Johnson transformation is a flexible transformation that is similiar
to Box-Cox, boxcox_trans()
, but does not require input values to be greater
than zero.
yj_trans(p)
p |
Transformation exponent, |
The transformation takes one of four forms depending on the values of y
and \lambda
.
y \ge 0
and \lambda \neq 0
:
y^{(\lambda)} = \frac{(y + 1)^\lambda - 1}{\lambda}
y \ge 0
and \lambda = 0
:
y^{(\lambda)} = \ln(y + 1)
y < 0
and \lambda \neq 2
:
y^{(\lambda)} = -\frac{(-y + 1)^{(2 - \lambda)} - 1}{2 - \lambda}
y < 0
and \lambda = 2
:
y^{(\lambda)} = -\ln(-y + 1)
Yeo, I., & Johnson, R. (2000). A New Family of Power Transformations to Improve Normality or Symmetry. Biometrika, 87(4), 954-959. http://www.jstor.org/stable/2673623
plot(yj_trans(-1), xlim = c(-10, 10))
plot(yj_trans(0), xlim = c(-10, 10))
plot(yj_trans(1), xlim = c(-10, 10))
plot(yj_trans(2), xlim = c(-10, 10))