Examples for 'srvyr::survey_mean'


Calculate mean/proportion and its variation using survey methods

Aliases: survey_mean survey_prop

Keywords:

### ** Examples

data(api, package = "survey")

dstrata <- apistrat %>%
  as_survey_design(strata = stype, weights = pw)

dstrata %>%
  summarise(api99_mn = survey_mean(api99),
            api_diff = survey_mean(api00 - api99, vartype = c("ci", "cv")))
# A tibble: 1 × 6
  api99_mn api99_mn_se api_diff api_diff_low api_diff_upp api_diff_cv
     <dbl>       <dbl>    <dbl>        <dbl>        <dbl>       <dbl>
1     629.        10.1     32.9         28.8         37.0      0.0632
dstrata %>%
  group_by(awards) %>%
  summarise(api00 = survey_mean(api00))
# A tibble: 2 × 3
  awards api00 api00_se
  <fct>  <dbl>    <dbl>
1 No      634.     15.6
2 Yes     678.     12.0
# Use `survey_prop` calculate the proportion in each group
dstrata %>%
  group_by(awards) %>%
  summarise(pct = survey_prop())
# A tibble: 2 × 3
  awards   pct pct_se
  <fct>  <dbl>  <dbl>
1 No     0.361 0.0349
2 Yes    0.639 0.0349
# Or you can also leave  out `x` in `survey_mean`, so this is equivalent
dstrata %>%
  group_by(awards) %>%
  summarise(pct = survey_mean())
# A tibble: 2 × 3
  awards   pct pct_se
  <fct>  <dbl>  <dbl>
1 No     0.361 0.0349
2 Yes    0.639 0.0349
# When there's more than one group, the last group is "peeled" off and proportions are
# calculated within that group, each adding up to 100%.
# So in this example, the sum of prop is 200% (100% for awards=="Yes" &
# 100% for awards=="No")
dstrata %>%
  group_by(stype, awards) %>%
  summarize(prop = survey_prop())
# A tibble: 6 × 4
# Groups:   stype [3]
  stype awards  prop prop_se
  <fct> <fct>  <dbl>   <dbl>
1 E     No      0.27  0.0446
2 E     Yes     0.73  0.0446
3 H     No      0.68  0.0666
4 H     Yes     0.32  0.0666
5 M     No      0.52  0.0714
6 M     Yes     0.48  0.0714
# The `interact` function can help you calculate the proportion over
# the interaction of two or more variables
# So in this example, the sum of prop is 100%
dstrata %>%
  group_by(interact(stype, awards)) %>%
  summarize(prop = survey_prop())
# A tibble: 6 × 4
  stype awards   prop prop_se
  <fct> <fct>   <dbl>   <dbl>
1 E     No     0.193  0.0318 
2 E     Yes    0.521  0.0318 
3 H     No     0.0829 0.00812
4 H     Yes    0.0390 0.00812
5 M     No     0.0855 0.0117 
6 M     Yes    0.0789 0.0117 
# Setting proportion = TRUE uses a different method for calculating confidence intervals
dstrata %>%
  summarise(high_api = survey_mean(api00 > 875, proportion = TRUE, vartype = "ci"))
# A tibble: 1 × 3
  high_api high_api_low high_api_upp
     <dbl>        <dbl>        <dbl>
1   0.0318       0.0129       0.0765
# level takes a vector for multiple levels of confidence intervals
dstrata %>%
  summarise(api99 = survey_mean(api99, vartype = "ci", level = c(0.95, 0.65)))
# A tibble: 1 × 5
  api99 api99_low95 api99_upp95 api99_low65 api99_upp65
  <dbl>       <dbl>       <dbl>       <dbl>       <dbl>
1  629.        609.        649.        620.        639.
# Note that the default degrees of freedom in srvyr is different from
# survey, so your confidence intervals might not be exact matches. To
# Replicate survey's behavior, use df = Inf
dstrata %>%
  summarise(srvyr_default = survey_mean(api99, vartype = "ci"),
            survey_defualt = survey_mean(api99, vartype = "ci", df = Inf))
# A tibble: 1 × 6
  srvyr_default srvyr_default_low srvyr_default_upp survey_defualt
          <dbl>             <dbl>             <dbl>          <dbl>
1          629.              609.              649.           629.
# … with 2 more variables: survey_defualt_low <dbl>, survey_defualt_upp <dbl>
comparison <- survey::svymean(~api99, dstrata)
confint(comparison) # survey's default
         2.5 %   97.5 %
api99 609.6051 649.1846
confint(comparison, df = survey::degf(dstrata)) # srvyr's default
         2.5 %   97.5 %
api99 609.4828 649.3069

[Package srvyr version 1.1.1 Index]