Aliases: unweighted
Keywords:
### ** Examples library(survey)
library(dplyr)
data(api) dstrata <- apistrat %>% as_survey_design(strata = stype, weights = pw) dstrata %>% summarise(api99_unw = unweighted(mean(api99)), n = unweighted(n()))
# A tibble: 1 × 2 api99_unw n <dbl> <int> 1 625. 200
dstrata %>% group_by(stype) %>% summarise(api_diff_unw = unweighted(mean(api00 - api99)))
# A tibble: 3 × 2 stype api_diff_unw <fct> <dbl> 1 E 38.6 2 H 8.46 3 M 26.4
# Some survey designs, like ones with raked weights, are not removed # when filtered to preserve the structure. So if you don't use `unweighted()` # your results can be wrong. # Declare basic clustered design ---- cluster_design <- as_survey_design( .data = apiclus1, id = dnum, weights = pw, fpc = fpc ) # Add raking weights for school type ---- pop.types <- data.frame(stype=c("E","H","M"), Freq=c(4421,755,1018)) pop.schwide <- data.frame(sch.wide=c("No","Yes"), Freq=c(1072,5122)) raked_design <- rake( cluster_design, sample.margins = list(~stype,~sch.wide), population.margins = list(pop.types, pop.schwide) ) raked_design %>% filter(cname != "Alameda") %>% group_by(cname) %>% summarize( direct_unw_mean = mean(api99), wrapped_unw_mean = unweighted(mean(api99)) ) %>% filter(cname == "Alameda")
# A tibble: 1 × 3 cname direct_unw_mean wrapped_unw_mean <chr> <dbl> <dbl> 1 Alameda 609 NaN
# Notice how the results are different when using `unweighted()`