Examples for 'stars::aggregate.stars'


spatially or temporally aggregate stars object

Aliases: aggregate.stars aggregate

Keywords:

### ** Examples

# aggregate time dimension in format Date
tif = system.file("tif/L7_ETMs.tif", package = "stars")
t1 = as.Date("2018-07-31")
x = read_stars(c(tif, tif, tif, tif), along = list(time = c(t1, t1+1, t1+2, t1+3)))[,1:30,1:30]
st_get_dimension_values(x, "time")
[1] "2018-07-31" "2018-08-01" "2018-08-02" "2018-08-03"
x_agg_time = aggregate(x, by = t1 + c(0, 2, 4), FUN = max)

# aggregate time dimension in format Date - interval
by_t = "2 days"
x_agg_time2 = aggregate(x, by = by_t, FUN = max)
st_get_dimension_values(x_agg_time2, "time")
[1] "2018-07-31" "2018-08-02"
#TBD:
#x_agg_time - x_agg_time2

# aggregate time dimension in format POSIXct
x = st_set_dimensions(x, 4, values = as.POSIXct(c("2018-07-31",
                                                  "2018-08-01",
                                                  "2018-08-02",
                                                  "2018-08-03")),
                      names = "time")
by_t = as.POSIXct(c("2018-07-31", "2018-08-02"))
x_agg_posix = aggregate(x, by = by_t, FUN = max)
st_get_dimension_values(x_agg_posix, "time")
[1] "2018-07-31 UTC" "2018-08-02 UTC"
#TBD:
# x_agg_time - x_agg_posix
aggregate(x, "2 days", mean)
stars object with 4 dimensions and 1 attribute
attribute(s):
             Min. 1st Qu. Median     Mean 3rd Qu. Max.
L7_ETMs.tif    17      43     58 57.58796      70  145
dimension(s):
     from to         offset  delta                     refsys point x/y
time    1  2 2018-07-31 UTC 2 days                    POSIXct    NA    
x       1 30         288776   28.5 SIRGAS 2000 / UTM zone 25S FALSE [x]
y       1 30        9120761  -28.5 SIRGAS 2000 / UTM zone 25S FALSE [y]
band    1  6             NA     NA                         NA    NA    
if (require(ncmeta, quietly = TRUE)) {
 # Spatial aggregation, see https://github.com/r-spatial/stars/issues/299
 prec_file = system.file("nc/test_stageiv_xyt.nc", package = "stars")
 prec = read_ncdf(prec_file, curvilinear = c("lon", "lat"))
 prec_slice = dplyr::slice(prec, index = 17, along = "time")
 nc = sf::read_sf(system.file("gpkg/nc.gpkg", package = "sf"), "nc.gpkg")
 nc = st_transform(nc, st_crs(prec_slice))
 agg = aggregate(prec_slice, st_geometry(nc), mean)
 plot(agg)
}

# example of using a function for "by": aggregate by month-of-year
d = c(10, 10, 150)
a = array(rnorm(prod(d)), d) # pure noise
times = Sys.Date() + seq(1, 2000, length.out = d[3])
m = as.numeric(format(times, "%m"))
signal = rep(sin(m / 12 * pi), each = prod(d[1:2])) # yearly period
s = (st_as_stars(a) + signal) %>%
      st_set_dimensions(3, values = times)
f = function(x, format = "%B") {
          months = format(as.Date(paste0("01-", 1:12, "-1970")), format)
          factor(format(x, format), levels = months)
}
agg = aggregate(s, f, mean)
plot(agg)
plot of chunk example-stars-aggregate.stars-1

[Package stars version 0.6-7 Index]