predict {terra} | R Documentation |
Make a SpatRaster object with predictions from a fitted model object (for example, obtained with glm
or randomForest
). The first argument is a SpatRaster object with the predictor variables. The names
in the Raster object should exactly match those expected by the model. Any regression like model for which a predict method has been implemented (or can be implemented) can be used.
This approach of using model predictions is commonly used in remote sensing (for the classification of satellite images) and in ecology, for species distribution modeling.
## S4 method for signature 'SpatRaster'
predict(object, model, fun=predict, ..., factors=NULL, const=NULL, na.rm=FALSE,
index=NULL, cores=1, cpkgs=NULL, filename="", overwrite=FALSE, wopt=list())
object |
SpatRaster |
model |
fitted model of any class that has a "predict" method (or for which you can supply a similar method as |
fun |
function. The predict function that takes |
... |
additional arguments for |
const |
data.frame. Can be used to add a constant value as a predictor variable so that you do not need to make a SpatRaster layer for it |
factors |
list with levels for factor variables. The list elements should be named with names that correspond to names in |
na.rm |
logical. If |
index |
integer. To select subset of output variables |
cores |
positive integer. If |
cpkgs |
character. The package(s) that need to be loaded on the nodes to be able to run the model.predict function (see examples) |
filename |
character. Output filename |
overwrite |
logical. If |
wopt |
list with named options for writing files as in |
SpatRaster
logo <- rast(system.file("ex/logo.tif", package="terra"))
names(logo) <- c("red", "green", "blue")
p <- matrix(c(48, 48, 48, 53, 50, 46, 54, 70, 84, 85, 74, 84, 95, 85,
66, 42, 26, 4, 19, 17, 7, 14, 26, 29, 39, 45, 51, 56, 46, 38, 31,
22, 34, 60, 70, 73, 63, 46, 43, 28), ncol=2)
a <- matrix(c(22, 33, 64, 85, 92, 94, 59, 27, 30, 64, 60, 33, 31, 9,
99, 67, 15, 5, 4, 30, 8, 37, 42, 27, 19, 69, 60, 73, 3, 5, 21,
37, 52, 70, 74, 9, 13, 4, 17, 47), ncol=2)
xy <- rbind(cbind(1, p), cbind(0, a))
# extract predictor values for points
e <- extract(logo, xy[,2:3])
# combine with response (excluding the ID column)
v <- data.frame(cbind(pa=xy[,1], e))
#build a model, here with glm
model <- glm(formula=pa~., data=v)
#predict to a raster
r1 <- predict(logo, model)
plot(r1)
points(p, bg='blue', pch=21)
points(a, bg='red', pch=21)
# logistic regression
model <- glm(formula=pa~., data=v, family="binomial")
r1log <- predict(logo, model, type="response")
# use a modified function to get the probability and standard error
# from the glm model. The values returned by "predict" are in a list,
# and this list needs to be transformed to a matrix
predfun <- function(model, data) {
v <- predict(model, data, se.fit=TRUE)
cbind(p=as.vector(v$fit), se=as.vector(v$se.fit))
}
r2 <- predict(logo, model, fun=predfun)
# principal components of a SpatRaster
# here using sampling to simulate an object too large
# to feed all its values to prcomp
sr <- values(spatSample(logo, 100, as.raster=TRUE))
pca <- prcomp(sr)
x <- predict(logo, pca)
plot(x)
## parallelization
## Not run:
## simple case with GLM
model <- glm(formula=pa~., data=v)
p <- predict(logo, model, cores=2)
## The above does not work with a model from a contributed
## package, as the package needs to be loaded in each core.
## Below are three approaches to deal with that
library(randomForest)
rfm <- randomForest(formula=pa~., data=v)
## approach 0 (not parallel)
rp0 <- predict(logo, rfm)
## approach 1, use the "cpkgs" argument
rp1 <- predict(logo, rfm, cores=2, cpkgs="randomForest")
## approach 2, write a custom predict function that loads the package
rfun <- function(mod, dat, ...) {
library(randomForest)
predict(mod, dat, ...)
}
rp2 <- predict(logo, rfm, fun=rfun, cores=2)
## approach 3, write a parallelized custom predict function
rfun <- function(mod, dat, ...) {
ncls <- length(cls)
nr <- nrow(dat)
s <- split(dat, rep(1:ncls, each=ceiling(nr/ncls), length.out=nr))
unlist( parallel::clusterApply(cls, s, function(x, ...) predict(mod, x, ...)) )
}
library(parallel)
cls <- parallel::makeCluster(2)
parallel::clusterExport(cls, c("rfm", "rfun", "randomForest"))
rp3 <- predict(logo, rfm, fun=rfun)
parallel::stopCluster(cls)
plot(c(rp0, rp1, rp2, rp3))
### with two output variables (probabilities for each class)
v$pa <- as.factor(v$pa)
rfm2 <- randomForest(formula=pa~., data=v)
rfp <- predict(logo, rfm2, cores=2, type="prob", cpkgs="randomForest")
## End(Not run)