Aliases: classError
Keywords: cluster
### ** Examples (a <- rep(1:3, 3))
[1] 1 2 3 1 2 3 1 2 3
(b <- rep(c("A", "B", "C"), 3))
[1] "A" "B" "C" "A" "B" "C" "A" "B" "C"
classError(a, b)
$misclassified integer(0) $errorRate [1] 0
(a <- sample(1:3, 9, replace = TRUE))
[1] 1 1 2 1 3 2 1 2 2
(b <- sample(c("A", "B", "C"), 9, replace = TRUE))
[1] "A" "A" "A" "A" "A" "A" "A" "A" "B"
classError(a, b)
$misclassified [1] 3 5 6 8 $errorRate [1] 0.4444444
class <- factor(c(5,5,5,2,5,3,1,2,1,1), levels = 1:5) probs <- matrix(c(0.15, 0.01, 0.08, 0.23, 0.01, 0.23, 0.59, 0.02, 0.38, 0.45, 0.36, 0.05, 0.30, 0.46, 0.15, 0.13, 0.06, 0.19, 0.27, 0.17, 0.40, 0.34, 0.18, 0.04, 0.47, 0.34, 0.32, 0.01, 0.03, 0.11, 0.04, 0.04, 0.09, 0.05, 0.28, 0.27, 0.02, 0.03, 0.12, 0.25, 0.05, 0.56, 0.35, 0.22, 0.09, 0.03, 0.01, 0.75, 0.20, 0.02), nrow = 10, ncol = 5) cbind(class, probs, map = map(probs))
class map [1,] 5 0.15 0.36 0.40 0.04 0.05 3 [2,] 5 0.01 0.05 0.34 0.04 0.56 5 [3,] 5 0.08 0.30 0.18 0.09 0.35 5 [4,] 2 0.23 0.46 0.04 0.05 0.22 2 [5,] 5 0.01 0.15 0.47 0.28 0.09 3 [6,] 3 0.23 0.13 0.34 0.27 0.03 3 [7,] 1 0.59 0.06 0.32 0.02 0.01 1 [8,] 2 0.02 0.19 0.01 0.03 0.75 5 [9,] 1 0.38 0.27 0.03 0.12 0.20 1 [10,] 1 0.45 0.17 0.11 0.25 0.02 1
classError(map(probs), class)
$misclassified [1] 2 3 8 $errorRate [1] 0.3