Aliases: defaultPrior
Keywords: cluster
### ** Examples # default prior irisBIC <- mclustBIC(iris[,-5], prior = priorControl())
fitting ... | | | 0% | |= | 1% | |== | 2% | |== | 3% | |=== | 4% | |==== | 5% | |===== | 7% | |===== | 8% | |====== | 9% | |======= | 10% | |======== | 11% | |======== | 12% | |========= | 13% | |========== | 14% | |=========== | 15% | |============ | 16% | |============ | 18% | |============= | 19% | |============== | 20% | |=============== | 21% | |=============== | 22% | |================ | 23% | |================= | 24% | |================== | 25% | |================== | 26% | |=================== | 27% | |==================== | 29% | |===================== | 30% | |====================== | 31% | |====================== | 32% | |======================= | 33% | |======================== | 34% | |========================= | 35% | |========================= | 36% | |========================== | 37% | |=========================== | 38% | |============================ | 40% | |============================ | 41% | |============================= | 42% | |============================== | 43% | |=============================== | 44% | |================================ | 45% | |================================ | 46% | |================================= | 47% | |================================== | 48% | |=================================== | 49% | |=================================== | 51% | |==================================== | 52% | |===================================== | 53% | |====================================== | 54% | |====================================== | 55% | |======================================= | 56% | |======================================== | 57% | |========================================= | 58% | |========================================== | 59% | |========================================== | 60% | |=========================================== | 62% | |============================================ | 63% | |============================================= | 64% | |============================================= | 65% | |============================================== | 66% | |=============================================== | 67% | |================================================ | 68% | |================================================ | 69% | |================================================= | 70% | |================================================== | 71% | |=================================================== | 73% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 76% | |====================================================== | 77% | |======================================================= | 78% | |======================================================= | 79% | |======================================================== | 80% | |========================================================= | 81% | |========================================================== | 82% | |========================================================== | 84% | |=========================================================== | 85% | |============================================================ | 86% | |============================================================= | 87% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 90% | |================================================================ | 91% | |================================================================= | 92% | |================================================================= | 93% | |================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 97% | |==================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 100%
Warning in mclustBIC(iris[, -5], prior = priorControl()): The presence of BIC values equal to NA is likely due to one or more of the mixture proportions being estimated as zero, so that the model estimated reduces to one with a smaller number of components.
summary(irisBIC, iris[,-5])
Best BIC values: VEV,2 VEV,3 VVV,2 BIC -580.8136 -587.403843 -592.51283 BIC diff 0.0000 -6.590289 -11.69928 Classification table for model (VEV,2): 1 2 50 100
# equivalent to previous example irisBIC <- mclustBIC(iris[,-5], prior = priorControl(functionName = "defaultPrior"))
fitting ... | | | 0% | |= | 1% | |== | 2% | |== | 3% | |=== | 4% | |==== | 5% | |===== | 7% | |===== | 8% | |====== | 9% | |======= | 10% | |======== | 11% | |======== | 12% | |========= | 13% | |========== | 14% | |=========== | 15% | |============ | 16% | |============ | 18% | |============= | 19% | |============== | 20% | |=============== | 21% | |=============== | 22% | |================ | 23% | |================= | 24% | |================== | 25% | |================== | 26% | |=================== | 27% | |==================== | 29% | |===================== | 30% | |====================== | 31% | |====================== | 32% | |======================= | 33% | |======================== | 34% | |========================= | 35% | |========================= | 36% | |========================== | 37% | |=========================== | 38% | |============================ | 40% | |============================ | 41% | |============================= | 42% | |============================== | 43% | |=============================== | 44% | |================================ | 45% | |================================ | 46% | |================================= | 47% | |================================== | 48% | |=================================== | 49% | |=================================== | 51% | |==================================== | 52% | |===================================== | 53% | |====================================== | 54% | |====================================== | 55% | |======================================= | 56% | |======================================== | 57% | |========================================= | 58% | |========================================== | 59% | |========================================== | 60% | |=========================================== | 62% | |============================================ | 63% | |============================================= | 64% | |============================================= | 65% | |============================================== | 66% | |=============================================== | 67% | |================================================ | 68% | |================================================ | 69% | |================================================= | 70% | |================================================== | 71% | |=================================================== | 73% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 76% | |====================================================== | 77% | |======================================================= | 78% | |======================================================= | 79% | |======================================================== | 80% | |========================================================= | 81% | |========================================================== | 82% | |========================================================== | 84% | |=========================================================== | 85% | |============================================================ | 86% | |============================================================= | 87% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 90% | |================================================================ | 91% | |================================================================= | 92% | |================================================================= | 93% | |================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 97% | |==================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 100%
Warning in mclustBIC(iris[, -5], prior = priorControl(functionName = "defaultPrior")): The presence of BIC values equal to NA is likely due to one or more of the mixture proportions being estimated as zero, so that the model estimated reduces to one with a smaller number of components.
summary(irisBIC, iris[,-5])
Best BIC values: VEV,2 VEV,3 VVV,2 BIC -580.8136 -587.403843 -592.51283 BIC diff 0.0000 -6.590289 -11.69928 Classification table for model (VEV,2): 1 2 50 100
# no prior on the mean; default prior on variance irisBIC <- mclustBIC(iris[,-5], prior = priorControl(shrinkage = 0))
fitting ... | | | 0% | |= | 1% | |== | 2% | |== | 3% | |=== | 4% | |==== | 5% | |===== | 7% | |===== | 8% | |====== | 9% | |======= | 10% | |======== | 11% | |======== | 12% | |========= | 13% | |========== | 14% | |=========== | 15% | |============ | 16% | |============ | 18% | |============= | 19% | |============== | 20% | |=============== | 21% | |=============== | 22% | |================ | 23% | |================= | 24% | |================== | 25% | |================== | 26% | |=================== | 27% | |==================== | 29% | |===================== | 30% | |====================== | 31% | |====================== | 32% | |======================= | 33% | |======================== | 34% | |========================= | 35% | |========================= | 36% | |========================== | 37% | |=========================== | 38% | |============================ | 40% | |============================ | 41% | |============================= | 42% | |============================== | 43% | |=============================== | 44% | |================================ | 45% | |================================ | 46% | |================================= | 47% | |================================== | 48% | |=================================== | 49% | |=================================== | 51% | |==================================== | 52% | |===================================== | 53% | |====================================== | 54% | |====================================== | 55% | |======================================= | 56% | |======================================== | 57% | |========================================= | 58% | |========================================== | 59% | |========================================== | 60% | |=========================================== | 62% | |============================================ | 63% | |============================================= | 64% | |============================================= | 65% | |============================================== | 66% | |=============================================== | 67% | |================================================ | 68% | |================================================ | 69% | |================================================= | 70% | |================================================== | 71% | |=================================================== | 73% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 76% | |====================================================== | 77% | |======================================================= | 78% | |======================================================= | 79% | |======================================================== | 80% | |========================================================= | 81% | |========================================================== | 82% | |========================================================== | 84% | |=========================================================== | 85% | |============================================================ | 86% | |============================================================= | 87% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 90% | |================================================================ | 91% | |================================================================= | 92% | |================================================================= | 93% | |================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 97% | |==================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 100%
Warning in mclustBIC(iris[, -5], prior = priorControl(shrinkage = 0)): The presence of BIC values equal to NA is likely due to one or more of the mixture proportions being estimated as zero, so that the model estimated reduces to one with a smaller number of components.
summary(irisBIC, iris[,-5])
Best BIC values: VEV,2 VEV,3 VVV,2 BIC -580.2861 -586.792195 -592.07132 BIC diff 0.0000 -6.506112 -11.78523 Classification table for model (VEV,2): 1 2 50 100
# equivalent to previous example irisBIC <- mclustBIC(iris[,-5], prior = priorControl(functionName="defaultPrior", shrinkage=0))
fitting ... | | | 0% | |= | 1% | |== | 2% | |== | 3% | |=== | 4% | |==== | 5% | |===== | 7% | |===== | 8% | |====== | 9% | |======= | 10% | |======== | 11% | |======== | 12% | |========= | 13% | |========== | 14% | |=========== | 15% | |============ | 16% | |============ | 18% | |============= | 19% | |============== | 20% | |=============== | 21% | |=============== | 22% | |================ | 23% | |================= | 24% | |================== | 25% | |================== | 26% | |=================== | 27% | |==================== | 29% | |===================== | 30% | |====================== | 31% | |====================== | 32% | |======================= | 33% | |======================== | 34% | |========================= | 35% | |========================= | 36% | |========================== | 37% | |=========================== | 38% | |============================ | 40% | |============================ | 41% | |============================= | 42% | |============================== | 43% | |=============================== | 44% | |================================ | 45% | |================================ | 46% | |================================= | 47% | |================================== | 48% | |=================================== | 49% | |=================================== | 51% | |==================================== | 52% | |===================================== | 53% | |====================================== | 54% | |====================================== | 55% | |======================================= | 56% | |======================================== | 57% | |========================================= | 58% | |========================================== | 59% | |========================================== | 60% | |=========================================== | 62% | |============================================ | 63% | |============================================= | 64% | |============================================= | 65% | |============================================== | 66% | |=============================================== | 67% | |================================================ | 68% | |================================================ | 69% | |================================================= | 70% | |================================================== | 71% | |=================================================== | 73% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 76% | |====================================================== | 77% | |======================================================= | 78% | |======================================================= | 79% | |======================================================== | 80% | |========================================================= | 81% | |========================================================== | 82% | |========================================================== | 84% | |=========================================================== | 85% | |============================================================ | 86% | |============================================================= | 87% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 90% | |================================================================ | 91% | |================================================================= | 92% | |================================================================= | 93% | |================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 97% | |==================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 100%
Warning in mclustBIC(iris[, -5], prior = priorControl(functionName = "defaultPrior", : The presence of BIC values equal to NA is likely due to one or more of the mixture proportions being estimated as zero, so that the model estimated reduces to one with a smaller number of components.
summary(irisBIC, iris[,-5])
Best BIC values: VEV,2 VEV,3 VVV,2 BIC -580.2861 -586.792195 -592.07132 BIC diff 0.0000 -6.506112 -11.78523 Classification table for model (VEV,2): 1 2 50 100
defaultPrior( iris[-5], G = 3, modelName = "VVV")
$shrinkage [1] 0.01 $mean Sepal.Length Sepal.Width Petal.Length Petal.Width 5.843333 3.057333 3.758000 1.199333 $dof [1] 6 $scale Sepal.Length Sepal.Width Petal.Length Petal.Width Sepal.Length 0.39588533 -0.02449928 0.7357264 0.29806902 Sepal.Width -0.02449928 0.10968467 -0.1903272 -0.07022853 Petal.Length 0.73572636 -0.19032720 1.7991839 0.74802043 Petal.Width 0.29806902 -0.07022853 0.7480204 0.33544412