Aliases: mclust1Dplot
Keywords: cluster
### ** Examples ## No test: n <- 250 ## create artificial data set.seed(1) y <- c(rnorm(n,-5), rnorm(n,0), rnorm(n,5)) yclass <- c(rep(1,n), rep(2,n), rep(3,n)) yModel <- Mclust(y)
fitting ... | | | 0% | |==== | 5% | |======= | 11% | |=========== | 16% | |=============== | 21% | |================== | 26% | |====================== | 32% | |========================== | 37% | |============================= | 42% | |================================= | 47% | |===================================== | 53% | |========================================= | 58% | |============================================ | 63% | |================================================ | 68% | |==================================================== | 74% | |======================================================= | 79% | |=========================================================== | 84% | |=============================================================== | 89% | |================================================================== | 95% | |======================================================================| 100%
mclust1Dplot(y, parameters = yModel$parameters, z = yModel$z, what = "classification")
mclust1Dplot(y, parameters = yModel$parameters, z = yModel$z, what = "error", truth = yclass)
mclust1Dplot(y, parameters = yModel$parameters, z = yModel$z, what = "density")
mclust1Dplot(y, z = yModel$z, parameters = yModel$parameters, what = "uncertainty")
## End(No test)