Aliases: plot.MclustSSC
Keywords: multivariate
### ** Examples X <- iris[,1:4] class <- iris$Species # randomly remove class labels set.seed(123) class[sample(1:length(class), size = 120)] <- NA table(class, useNA = "ifany")
class setosa versicolor virginica <NA> 10 15 5 120
clPairs(X, ifelse(is.na(class), 0, class), symbols = c(0, 16, 17, 18), colors = c("grey", 4, 2, 3), main = "Partially classified data")
# Fit semi-supervised classification model mod_SSC <- MclustSSC(X, class)
fitting ... | | | 0% | |===== | 7% | |========== | 14% | |=============== | 21% | |==================== | 29% | |========================= | 36% | |============================== | 43% | |=================================== | 50% | |======================================== | 57% | |============================================= | 64% | |================================================== | 71% | |======================================================= | 79% | |============================================================ | 86% | |================================================================= | 93% | |======================================================================| 100%
summary(mod_SSC, parameters = TRUE)
---------------------------------------------------------------- Gaussian finite mixture model for semi-supervised classification ---------------------------------------------------------------- log-likelihood n df BIC -193.521 150 38 -577.4461 Classes n % Model G setosa 10 6.67 VEV 1 versicolor 15 10.00 VEV 1 virginica 5 3.33 VEV 1 <NA> 120 80.00 Mixing probabilities: setosa versicolor virginica 0.3333333 0.3876695 0.2789972 Means: setosa versicolor virginica Sepal.Length 5.006 6.055272 6.549251 Sepal.Width 3.428 2.828321 2.932692 Petal.Length 1.462 4.453865 5.534246 Petal.Width 0.246 1.396544 2.064307 Variances: setosa Sepal.Length Sepal.Width Petal.Length Petal.Width Sepal.Length 0.15368111 0.13158310 0.021865057 0.013501154 Sepal.Width 0.13158310 0.17948985 0.015459683 0.012186709 Petal.Length 0.02186506 0.01545968 0.029128899 0.006498098 Petal.Width 0.01350115 0.01218671 0.006498098 0.009759900 versicolor Sepal.Length Sepal.Width Petal.Length Petal.Width Sepal.Length 0.29753053 0.10407744 0.2505462 0.07457733 Sepal.Width 0.10407744 0.10023478 0.1202666 0.05072488 Petal.Length 0.25054623 0.12026661 0.3560530 0.11652817 Petal.Width 0.07457733 0.05072488 0.1165282 0.06076865 virginica Sepal.Length Sepal.Width Petal.Length Petal.Width Sepal.Length 0.46326081 0.07787790 0.34315068 0.06944725 Sepal.Width 0.07787790 0.08041718 0.05955965 0.05271723 Petal.Length 0.34315068 0.05955965 0.35468725 0.06589333 Petal.Width 0.06944725 0.05271723 0.06589333 0.06694996 Classification summary: Predicted Class setosa versicolor virginica setosa 10 0 0 versicolor 0 15 0 virginica 0 0 5 <NA> 40 45 35
pred_SSC <- predict(mod_SSC) table(Predicted = pred_SSC$classification, Actual = class, useNA = "ifany")
Actual Predicted setosa versicolor virginica <NA> setosa 10 0 0 40 versicolor 0 15 0 45 virginica 0 0 5 35
plot(mod_SSC, what = "BIC")
plot(mod_SSC, what = "classification")
plot(mod_SSC, what = "uncertainty")