Aliases: summary.Mclust print.summary.Mclust
Keywords: cluster
### ** Examples ## No test: mod1 = Mclust(iris[,1:4])
fitting ... | | | 0% | |= | 1% | |= | 2% | |== | 2% | |== | 3% | |=== | 4% | |=== | 5% | |==== | 6% | |===== | 7% | |====== | 8% | |====== | 9% | |======= | 9% | |======= | 10% | |======== | 11% | |======== | 12% | |========= | 13% | |========== | 14% | |========== | 15% | |=========== | 16% | |============ | 17% | |============= | 18% | |============= | 19% | |============== | 20% | |=============== | 21% | |=============== | 22% | |================ | 23% | |================= | 24% | |================== | 25% | |================== | 26% | |=================== | 27% | |=================== | 28% | |==================== | 28% | |==================== | 29% | |===================== | 30% | |===================== | 31% | |====================== | 31% | |======================= | 32% | |======================= | 33% | |======================== | 34% | |======================== | 35% | |========================= | 35% | |========================= | 36% | |========================== | 37% | |========================== | 38% | |=========================== | 39% | |============================ | 39% | |============================ | 40% | |============================= | 41% | |============================= | 42% | |============================== | 43% | |=============================== | 44% | |=============================== | 45% | |================================ | 46% | |================================= | 46% | |================================= | 47% | |================================== | 48% | |================================== | 49% | |=================================== | 50% | |==================================== | 51% | |==================================== | 52% | |===================================== | 53% | |===================================== | 54% | |====================================== | 54% | |======================================= | 55% | |======================================= | 56% | |======================================== | 57% | |========================================= | 58% | |========================================= | 59% | |========================================== | 60% | |========================================== | 61% | |=========================================== | 61% | |============================================ | 62% | |============================================ | 63% | |============================================= | 64% | |============================================= | 65% | |============================================== | 65% | |============================================== | 66% | |=============================================== | 67% | |=============================================== | 68% | |================================================ | 69% | |================================================= | 69% | |================================================= | 70% | |================================================== | 71% | |================================================== | 72% | |=================================================== | 72% | |=================================================== | 73% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 76% | |====================================================== | 77% | |======================================================= | 78% | |======================================================= | 79% | |======================================================== | 80% | |========================================================= | 81% | |========================================================= | 82% | |========================================================== | 83% | |=========================================================== | 84% | |============================================================ | 85% | |============================================================ | 86% | |============================================================= | 87% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 90% | |=============================================================== | 91% | |================================================================ | 91% | |================================================================ | 92% | |================================================================= | 93% | |================================================================== | 94% | |=================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 97% | |==================================================================== | 98% | |===================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 100%
summary(mod1)
---------------------------------------------------- Gaussian finite mixture model fitted by EM algorithm ---------------------------------------------------- Mclust VEV (ellipsoidal, equal shape) model with 2 components: log-likelihood n df BIC ICL -215.726 150 26 -561.7285 -561.7289 Clustering table: 1 2 50 100
summary(mod1, parameters = TRUE, classification = FALSE)
---------------------------------------------------- Gaussian finite mixture model fitted by EM algorithm ---------------------------------------------------- Mclust VEV (ellipsoidal, equal shape) model with 2 components: log-likelihood n df BIC ICL -215.726 150 26 -561.7285 -561.7289 Mixing probabilities: 1 2 0.3333319 0.6666681 Means: [,1] [,2] Sepal.Length 5.0060022 6.261996 Sepal.Width 3.4280049 2.871999 Petal.Length 1.4620007 4.905992 Petal.Width 0.2459998 1.675997 Variances: [,,1] Sepal.Length Sepal.Width Petal.Length Petal.Width Sepal.Length 0.15065114 0.13080115 0.02084463 0.01309107 Sepal.Width 0.13080115 0.17604529 0.01603245 0.01221458 Petal.Length 0.02084463 0.01603245 0.02808260 0.00601568 Petal.Width 0.01309107 0.01221458 0.00601568 0.01042365 [,,2] Sepal.Length Sepal.Width Petal.Length Petal.Width Sepal.Length 0.4000438 0.10865444 0.3994018 0.14368256 Sepal.Width 0.1086544 0.10928077 0.1238904 0.07284384 Petal.Length 0.3994018 0.12389040 0.6109024 0.25738990 Petal.Width 0.1436826 0.07284384 0.2573899 0.16808182
mod2 = densityMclust(faithful, plot = FALSE)
fitting ... | | | 0% | |= | 1% | |= | 2% | |== | 2% | |== | 3% | |=== | 4% | |=== | 5% | |==== | 6% | |===== | 7% | |====== | 8% | |====== | 9% | |======= | 9% | |======= | 10% | |======== | 11% | |======== | 12% | |========= | 13% | |========== | 14% | |========== | 15% | |=========== | 16% | |============ | 17% | |============= | 18% | |============= | 19% | |============== | 20% | |=============== | 21% | |=============== | 22% | |================ | 23% | |================= | 24% | |================== | 25% | |================== | 26% | |=================== | 27% | |=================== | 28% | |==================== | 28% | |==================== | 29% | |===================== | 30% | |===================== | 31% | |====================== | 31% | |======================= | 32% | |======================= | 33% | |======================== | 34% | |======================== | 35% | |========================= | 35% | |========================= | 36% | |========================== | 37% | |========================== | 38% | |=========================== | 39% | |============================ | 39% | |============================ | 40% | |============================= | 41% | |============================= | 42% | |============================== | 43% | |=============================== | 44% | |=============================== | 45% | |================================ | 46% | |================================= | 46% | |================================= | 47% | |================================== | 48% | |================================== | 49% | |=================================== | 50% | |==================================== | 51% | |==================================== | 52% | |===================================== | 53% | |===================================== | 54% | |====================================== | 54% | |======================================= | 55% | |======================================= | 56% | |======================================== | 57% | |========================================= | 58% | |========================================= | 59% | |========================================== | 60% | |========================================== | 61% | |=========================================== | 61% | |============================================ | 62% | |============================================ | 63% | |============================================= | 64% | |============================================= | 65% | |============================================== | 65% | |============================================== | 66% | |=============================================== | 67% | |=============================================== | 68% | |================================================ | 69% | |================================================= | 69% | |================================================= | 70% | |================================================== | 71% | |================================================== | 72% | |=================================================== | 72% | |=================================================== | 73% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 76% | |====================================================== | 77% | |======================================================= | 78% | |======================================================= | 79% | |======================================================== | 80% | |========================================================= | 81% | |========================================================= | 82% | |========================================================== | 83% | |=========================================================== | 84% | |============================================================ | 85% | |============================================================ | 86% | |============================================================= | 87% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 90% | |=============================================================== | 91% | |================================================================ | 91% | |================================================================ | 92% | |================================================================= | 93% | |================================================================== | 94% | |=================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 97% | |==================================================================== | 98% | |===================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 100%
summary(mod2)
------------------------------------------------------- Density estimation via Gaussian finite mixture modeling ------------------------------------------------------- Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 3 components: log-likelihood n df BIC ICL -1126.326 272 11 -2314.316 -2357.824
summary(mod2, parameters = TRUE)
------------------------------------------------------- Density estimation via Gaussian finite mixture modeling ------------------------------------------------------- Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 3 components: log-likelihood n df BIC ICL -1126.326 272 11 -2314.316 -2357.824 Mixing probabilities: 1 2 3 0.1656784 0.3563696 0.4779520 Means: [,1] [,2] [,3] eruptions 3.793066 2.037596 4.463245 waiting 77.521051 54.491158 80.833439 Variances: [,,1] eruptions waiting eruptions 0.07825448 0.4801979 waiting 0.48019785 33.7671464 [,,2] eruptions waiting eruptions 0.07825448 0.4801979 waiting 0.48019785 33.7671464 [,,3] eruptions waiting eruptions 0.07825448 0.4801979 waiting 0.48019785 33.7671464
## End(No test)