Keywords: models
### ** Examples ### replicate analysis of Hasler & Hothorn (2011), ### A Dunnett-Type Procedure for Multiple Endpoints, ### The International Journal of Biostatistics: Vol. 7: Iss. 1, Article 3. ### DOI: 10.2202/1557-4679.1258 library("sandwich") ### see ?coagulation if (require("SimComp")) { data("coagulation", package = "SimComp") ### level "S" is the standard, "H" and "B" are novel procedures coagulation$Group <- relevel(coagulation$Group, ref = "S") ### fit marginal models (m1 <- lm(Thromb.count ~ Group, data = coagulation)) (m2 <- lm(ADP ~ Group, data = coagulation)) (m3 <- lm(TRAP ~ Group, data = coagulation)) ### set-up Dunnett comparisons for H - S and B - S ### for all three models g <- glht(mmm(Thromb = m1, ADP = m2, TRAP = m3), mlf(mcp(Group = "Dunnett")), alternative = "greater") ### joint correlation cov2cor(vcov(g)) ### simultaneous p-values adjusted by taking the correlation ### between the score contributions into account summary(g) ### simultaneous confidence intervals confint(g) ### compare with ## Not run: ##D library("SimComp") ##D SimCiDiff(data = coagulation, grp = "Group", ##D resp = c("Thromb.count","ADP","TRAP"), ##D type = "Dunnett", alternative = "greater", ##D covar.equal = TRUE) ##D ## End(Not run) ### use sandwich variance matrix g <- glht(mmm(Thromb = m1, ADP = m2, TRAP = m3), mlf(mcp(Group = "Dunnett")), alternative = "greater", vcov = sandwich) summary(g) confint(g) }
Warning in library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, : there is no package called 'SimComp'
### attitude towards science data data("mn6.9", package = "TH.data") ### one model for each item mn6.9.y1 <- glm(y1 ~ group, family = binomial(), na.action = na.omit, data = mn6.9) mn6.9.y2 <- glm(y2 ~ group, family = binomial(), na.action = na.omit, data = mn6.9) mn6.9.y3 <- glm(y3 ~ group, family = binomial(), na.action = na.omit, data = mn6.9) mn6.9.y4 <- glm(y4 ~ group, family = binomial(), na.action = na.omit, data = mn6.9) ### test all parameters simulaneously summary(glht(mmm(mn6.9.y1, mn6.9.y2, mn6.9.y3, mn6.9.y4), mlf(diag(2))))
Simultaneous Tests for General Linear Hypotheses Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) mn6.9.y1: 1 == 0 1.47323 0.06649 22.156 <1e-04 *** mn6.9.y1: 2 == 0 0.14833 0.09638 1.539 0.5806 mn6.9.y2: 1 == 0 -1.38713 0.06476 -21.419 <1e-04 *** mn6.9.y2: 2 == 0 -0.19598 0.09455 -2.073 0.2331 mn6.9.y3: 1 == 0 0.44024 0.05306 8.298 <1e-04 *** mn6.9.y3: 2 == 0 -0.37449 0.07417 -5.049 <1e-04 *** mn6.9.y4: 1 == 0 0.16537 0.05197 3.182 0.0108 * mn6.9.y4: 2 == 0 -0.37132 0.07357 -5.047 <1e-04 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Adjusted p values reported -- single-step method)
### group differences summary(glht(mmm(mn6.9.y1, mn6.9.y2, mn6.9.y3, mn6.9.y4), mlf("group2 = 0")))
Simultaneous Tests for General Linear Hypotheses Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) mn6.9.y1: group2 == 0 0.14833 0.09638 1.539 0.409 mn6.9.y2: group2 == 0 -0.19598 0.09455 -2.073 0.144 mn6.9.y3: group2 == 0 -0.37449 0.07417 -5.049 <1e-04 *** mn6.9.y4: group2 == 0 -0.37132 0.07357 -5.047 <1e-04 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Adjusted p values reported -- single-step method)
### alternative analysis of Klingenberg & Satopaa (2013), ### Simultaneous Confidence Intervals for Comparing Margins of ### Multivariate Binary Data, CSDA, 64, 87-98 ### http://dx.doi.org/10.1016/j.csda.2013.02.016 ### see supplementary material for data description ### NOTE: this is not the real data but only a subsample influenza <- structure(list( HEADACHE = c(1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L), MALAISE = c(0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L), PYREXIA = c(0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L ), ARTHRALGIA = c(0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L ), group = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("pla", "trt"), class = "factor"), Freq = c(32L, 165L, 10L, 23L, 3L, 1L, 4L, 2L, 4L, 2L, 1L, 1L, 1L, 1L, 167L, 1L, 11L, 37L, 7L, 7L, 5L, 3L, 3L, 1L, 2L, 4L, 2L)), .Names = c("HEADACHE", "MALAISE", "PYREXIA", "ARTHRALGIA", "group", "Freq"), row.names = c(1L, 2L, 3L, 5L, 9L, 36L, 43L, 50L, 74L, 83L, 139L, 175L, 183L, 205L, 251L, 254L, 255L, 259L, 279L, 281L, 282L, 286L, 302L, 322L, 323L, 366L, 382L), class = "data.frame") influenza <- influenza[rep(1:nrow(influenza), influenza$Freq), 1:5] ### Fitting marginal logistic regression models (head_logreg <- glm(HEADACHE ~ group, data = influenza, family = binomial()))
Call: glm(formula = HEADACHE ~ group, family = binomial(), data = influenza) Coefficients: (Intercept) grouptrt -0.8664 -0.1384 Degrees of Freedom: 499 Total (i.e. Null); 498 Residual Null Deviance: 594.8 Residual Deviance: 594.3 AIC: 598.3
(mala_logreg <- glm(MALAISE ~ group, data = influenza, family = binomial()))
Call: glm(formula = MALAISE ~ group, family = binomial(), data = influenza) Coefficients: (Intercept) grouptrt -1.9551 0.4114 Degrees of Freedom: 499 Total (i.e. Null); 498 Residual Null Deviance: 422.7 Residual Deviance: 420 AIC: 424
(pyre_logreg <- glm(PYREXIA ~ group, data = influenza, family = binomial()))
Call: glm(formula = PYREXIA ~ group, family = binomial(), data = influenza) Coefficients: (Intercept) grouptrt -2.389 -1.158 Degrees of Freedom: 499 Total (i.e. Null); 498 Residual Null Deviance: 215.8 Residual Deviance: 208.1 AIC: 212.1
(arth_logreg <- glm(ARTHRALGIA ~ group, data = influenza, family = binomial()))
Call: glm(formula = ARTHRALGIA ~ group, family = binomial(), data = influenza) Coefficients: (Intercept) grouptrt -2.6178 -0.1337 Degrees of Freedom: 499 Total (i.e. Null); 498 Residual Null Deviance: 237.8 Residual Deviance: 237.7 AIC: 241.7
### Simultaneous inference for log-odds xy.sim <- glht(mmm(head = head_logreg, mala = mala_logreg, pyre = pyre_logreg, arth = arth_logreg), mlf("grouptrt = 0")) summary(xy.sim)
Simultaneous Tests for General Linear Hypotheses Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) head: grouptrt == 0 -0.1384 0.1990 -0.695 0.9181 mala: grouptrt == 0 0.4114 0.2538 1.621 0.3352 pyre: grouptrt == 0 -1.1580 0.4460 -2.596 0.0358 * arth: grouptrt == 0 -0.1337 0.3661 -0.365 0.9918 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Adjusted p values reported -- single-step method)
confint(xy.sim)
Simultaneous Confidence Intervals Fit: NULL Quantile = 2.4749 95% family-wise confidence level Linear Hypotheses: Estimate lwr upr head: grouptrt == 0 -0.13837 -0.63079 0.35404 mala: grouptrt == 0 0.41140 -0.21670 1.03949 pyre: grouptrt == 0 -1.15795 -2.26189 -0.05402 arth: grouptrt == 0 -0.13371 -1.03981 0.77238
### Artificial examples ### Combining linear regression and logistic regression set.seed(29) y1 <- rnorm(100) y2 <- factor(y1 + rnorm(100, sd = .1) > 0) x1 <- gl(4, 25) x2 <- runif(100, 0, 10) m1 <- lm(y1 ~ x1 + x2) m2 <- glm(y2 ~ x1 + x2, family = binomial()) ### Note that the same explanatory variables are considered in both models ### but the resulting parameter estimates are on 2 different scales ### (original and log-odds scales) ### Simultaneous inference for the same parameter in the 2 model fits summary(glht(mmm(m1 = m1, m2 = m2), mlf("x12 = 0")))
Simultaneous Tests for General Linear Hypotheses Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) m1: x12 == 0 -0.3537 0.2850 -1.241 0.321 m2: x12 == 0 -0.6409 0.5765 -1.112 0.392 (Adjusted p values reported -- single-step method)
### Simultaneous inference for different parameters in the 2 model fits summary(glht(mmm(m1 = m1, m2 = m2), mlf(m1 = "x12 = 0", m2 = "x13 = 0")))
Simultaneous Tests for General Linear Hypotheses Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) m1: x12 == 0 -0.3537 0.2850 -1.241 0.362 m2: x13 == 0 -0.8264 0.5824 -1.419 0.270 (Adjusted p values reported -- single-step method)
### Simultaneous inference for different and identical parameters in the 2 ### model fits summary(glht(mmm(m1 = m1, m2 = m2), mlf(m1 = c("x12 = 0", "x13 = 0"), m2 = "x13 = 0")))
Simultaneous Tests for General Linear Hypotheses Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) m1: x12 == 0 -0.3537 0.2850 -1.241 0.418 m1: x13 == 0 -0.4220 0.2849 -1.481 0.286 m2: x13 == 0 -0.8264 0.5824 -1.419 0.317 (Adjusted p values reported -- single-step method)
### Examples for binomial data ### Two independent outcomes y1.1 <- rbinom(100, 1, 0.45) y1.2 <- rbinom(100, 1, 0.55) group <- factor(rep(c("A", "B"), 50)) m1 <- glm(y1.1 ~ group, family = binomial) m2 <- glm(y1.2 ~ group, family = binomial) summary(glht(mmm(m1 = m1, m2 = m2), mlf("groupB = 0")))
Simultaneous Tests for General Linear Hypotheses Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) m1: groupB == 0 0.41502 0.40905 1.015 0.523 m2: groupB == 0 0.08161 0.40407 0.202 0.974 (Adjusted p values reported -- single-step method)
### Two perfectly correlated outcomes y2.1 <- rbinom(100, 1, 0.45) y2.2 <- y2.1 group <- factor(rep(c("A", "B"), 50)) m1 <- glm(y2.1 ~ group, family = binomial) m2 <- glm(y2.2 ~ group, family = binomial) summary(glht(mmm(m1 = m1, m2 = m2), mlf("groupB = 0")))
Simultaneous Tests for General Linear Hypotheses Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) m1: groupB == 0 0.2427 0.4028 0.603 0.547 m2: groupB == 0 0.2427 0.4028 0.603 0.547 (Adjusted p values reported -- single-step method)
### use sandwich covariance matrix summary(glht(mmm(m1 = m1, m2 = m2), mlf("groupB = 0"), vcov = sandwich))
Simultaneous Tests for General Linear Hypotheses Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) m1: groupB == 0 0.2427 0.4028 0.603 0.547 m2: groupB == 0 0.2427 0.4028 0.603 0.547 (Adjusted p values reported -- single-step method)