Aliases: cancor
Keywords: multivariate
### ** Examples ## No test: ## signs of results are random pop <- LifeCycleSavings[, 2:3] oec <- LifeCycleSavings[, -(2:3)] cancor(pop, oec)
$cor [1] 0.8247966 0.3652762 $xcoef [,1] [,2] pop15 -0.009110856 -0.03622206 pop75 0.048647514 -0.26031158 $ycoef [,1] [,2] [,3] sr 0.0084710221 3.337936e-02 -5.157130e-03 dpi 0.0001307398 -7.588232e-05 4.543705e-06 ddpi 0.0041706000 -1.226790e-02 5.188324e-02 $xcenter pop15 pop75 35.0896 2.2930 $ycenter sr dpi ddpi 9.6710 1106.7584 3.7576
x <- matrix(rnorm(150), 50, 3) y <- matrix(rnorm(250), 50, 5) (cxy <- cancor(x, y))
$cor [1] 0.3967470 0.2107417 0.1968901 $xcoef [,1] [,2] [,3] [1,] -0.06593589 0.06098358 -0.09286588 [2,] 0.14700126 0.05603381 -0.03842151 [3,] 0.01479996 0.11122547 0.09586480 $ycoef [,1] [,2] [,3] [,4] [,5] [1,] 0.132695761 -0.06085018 0.0034372155 0.01154641 -0.04490352 [2,] -0.051253981 0.01609133 0.0411734250 0.05190233 -0.13563171 [3,] 0.004648237 -0.06186305 0.0005624683 0.14340079 0.02828000 [4,] 0.091812844 0.10166133 0.0386736084 0.08020767 0.01687649 [5,] 0.008859536 -0.03213775 0.1230839807 -0.02351713 0.01795242 $xcenter [1] -0.01811724 0.13713736 -0.04103393 $ycenter [1] 0.30596509 -0.36281399 -0.07622503 -0.05677703 0.26467548
all(abs(cor(x %*% cxy$xcoef, y %*% cxy$ycoef)[,1:3] - diag(cxy $ cor)) < 1e-15)
[1] TRUE
all(abs(cor(x %*% cxy$xcoef) - diag(3)) < 1e-15)
[1] TRUE
all(abs(cor(y %*% cxy$ycoef) - diag(5)) < 1e-15)
[1] TRUE
## End(No test)