Aliases: proj proj.default proj.lm proj.aov proj.aovlist
Keywords: models
### ** Examples N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0) P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0) K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0) yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5, 55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0) npk <- data.frame(block = gl(6,4), N = factor(N), P = factor(P), K = factor(K), yield = yield) npk.aov <- aov(yield ~ block + N*P*K, npk) proj(npk.aov)
(Intercept) block N P K N:P N:K 1 54.875 -0.850 -2.808333 -0.5916667 -1.991667 0.9416667 1.175 2 54.875 -0.850 2.808333 -0.5916667 1.991667 -0.9416667 1.175 3 54.875 -0.850 -2.808333 0.5916667 1.991667 -0.9416667 -1.175 4 54.875 -0.850 2.808333 0.5916667 -1.991667 0.9416667 -1.175 5 54.875 2.575 2.808333 0.5916667 1.991667 0.9416667 1.175 6 54.875 2.575 2.808333 -0.5916667 -1.991667 -0.9416667 -1.175 7 54.875 2.575 -2.808333 0.5916667 -1.991667 -0.9416667 1.175 8 54.875 2.575 -2.808333 -0.5916667 1.991667 0.9416667 -1.175 9 54.875 5.900 -2.808333 -0.5916667 1.991667 0.9416667 -1.175 10 54.875 5.900 2.808333 -0.5916667 -1.991667 -0.9416667 -1.175 11 54.875 5.900 2.808333 0.5916667 1.991667 0.9416667 1.175 12 54.875 5.900 -2.808333 0.5916667 -1.991667 -0.9416667 1.175 13 54.875 -4.750 2.808333 0.5916667 1.991667 0.9416667 1.175 14 54.875 -4.750 2.808333 -0.5916667 -1.991667 -0.9416667 -1.175 15 54.875 -4.750 -2.808333 0.5916667 -1.991667 -0.9416667 1.175 16 54.875 -4.750 -2.808333 -0.5916667 1.991667 0.9416667 -1.175 17 54.875 -4.350 2.808333 -0.5916667 1.991667 -0.9416667 1.175 18 54.875 -4.350 -2.808333 0.5916667 1.991667 -0.9416667 -1.175 19 54.875 -4.350 2.808333 0.5916667 -1.991667 0.9416667 -1.175 20 54.875 -4.350 -2.808333 -0.5916667 -1.991667 0.9416667 1.175 21 54.875 1.475 2.808333 0.5916667 -1.991667 0.9416667 -1.175 22 54.875 1.475 2.808333 -0.5916667 1.991667 -0.9416667 1.175 23 54.875 1.475 -2.808333 -0.5916667 -1.991667 0.9416667 1.175 24 54.875 1.475 -2.808333 0.5916667 1.991667 -0.9416667 -1.175 P:K Residuals 1 0.1416667 -1.39166667 2 -0.1416667 4.47500000 3 0.1416667 -5.02500000 4 -0.1416667 1.94166667 5 0.1416667 -5.30000000 6 0.1416667 2.80000000 7 -0.1416667 2.16666667 8 -0.1416667 0.33333333 9 -0.1416667 3.80833333 10 0.1416667 -3.22500000 11 0.1416667 1.07500000 12 -0.1416667 -1.65833333 13 0.1416667 4.22500000 14 0.1416667 0.42500000 15 -0.1416667 -0.50833333 16 -0.1416667 -4.14166667 17 -0.1416667 -2.82500000 18 0.1416667 3.17500000 19 -0.1416667 -1.75833333 20 0.1416667 1.40833333 21 -0.1416667 -0.18333333 22 -0.1416667 -1.65000000 23 0.1416667 -0.01666667 24 0.1416667 1.85000000 attr(,"df") (Intercept) block N P K N:P 1 5 1 1 1 1 N:K P:K Residuals 1 1 12 attr(,"formula") yield ~ block + N * P * K attr(,"onedf") [1] FALSE attr(,"factors") attr(,"factors")$`(Intercept)` [1] "(Intercept)" attr(,"factors")$block [1] "block" attr(,"factors")$N [1] "N" attr(,"factors")$P [1] "P" attr(,"factors")$K [1] "K" attr(,"factors")$`N:P` [1] "N" "P" attr(,"factors")$`N:K` [1] "N" "K" attr(,"factors")$`P:K` [1] "P" "K" attr(,"factors")$Residuals [1] "block" "N" "P" "K" "Within" attr(,"call") aov(formula = yield ~ block + N * P * K, data = npk) attr(,"t.factor") block N P K N:P N:K P:K N:P:K yield 0 0 0 0 0 0 0 0 block 1 0 0 0 0 0 0 0 N 0 1 0 0 1 1 0 1 P 0 0 1 0 1 0 1 1 K 0 0 0 1 0 1 1 1 attr(,"class") [1] "aovproj"
## as a test, not particularly sensible options(contrasts = c("contr.helmert", "contr.treatment")) npk.aovE <- aov(yield ~ N*P*K + Error(block), npk) proj(npk.aovE)
(Intercept) : (Intercept) 1 54.875 2 54.875 3 54.875 4 54.875 5 54.875 6 54.875 7 54.875 8 54.875 9 54.875 10 54.875 11 54.875 12 54.875 13 54.875 14 54.875 15 54.875 16 54.875 17 54.875 18 54.875 19 54.875 20 54.875 21 54.875 22 54.875 23 54.875 24 54.875 attr(,"df") attr(,"df")$df (Intercept) 1 attr(,"onedf") attr(,"onedf")$onedf [1] FALSE attr(,"factors") attr(,"factors")$`(Intercept)` [1] "(Intercept)" block : N:P:K Residuals 1 -1.241667 0.3916667 2 -1.241667 0.3916667 3 -1.241667 0.3916667 4 -1.241667 0.3916667 5 1.241667 1.3333333 6 1.241667 1.3333333 7 1.241667 1.3333333 8 1.241667 1.3333333 9 1.241667 4.6583333 10 1.241667 4.6583333 11 1.241667 4.6583333 12 1.241667 4.6583333 13 1.241667 -5.9916667 14 1.241667 -5.9916667 15 1.241667 -5.9916667 16 1.241667 -5.9916667 17 -1.241667 -3.1083333 18 -1.241667 -3.1083333 19 -1.241667 -3.1083333 20 -1.241667 -3.1083333 21 -1.241667 2.7166667 22 -1.241667 2.7166667 23 -1.241667 2.7166667 24 -1.241667 2.7166667 attr(,"df") attr(,"df")$df N:P:K Residuals 1 4 attr(,"onedf") attr(,"onedf")$onedf [1] FALSE attr(,"factors") attr(,"factors")$`N:P:K` [1] "N" "P" "K" attr(,"factors")$Residuals [1] "block" Within : N P K N:P N:K P:K Residuals 1 -2.808333 -0.5916667 -1.991667 0.9416667 1.175 0.1416667 -1.39166667 2 2.808333 -0.5916667 1.991667 -0.9416667 1.175 -0.1416667 4.47500000 3 -2.808333 0.5916667 1.991667 -0.9416667 -1.175 0.1416667 -5.02500000 4 2.808333 0.5916667 -1.991667 0.9416667 -1.175 -0.1416667 1.94166667 5 2.808333 0.5916667 1.991667 0.9416667 1.175 0.1416667 -5.30000000 6 2.808333 -0.5916667 -1.991667 -0.9416667 -1.175 0.1416667 2.80000000 7 -2.808333 0.5916667 -1.991667 -0.9416667 1.175 -0.1416667 2.16666667 8 -2.808333 -0.5916667 1.991667 0.9416667 -1.175 -0.1416667 0.33333333 9 -2.808333 -0.5916667 1.991667 0.9416667 -1.175 -0.1416667 3.80833333 10 2.808333 -0.5916667 -1.991667 -0.9416667 -1.175 0.1416667 -3.22500000 11 2.808333 0.5916667 1.991667 0.9416667 1.175 0.1416667 1.07500000 12 -2.808333 0.5916667 -1.991667 -0.9416667 1.175 -0.1416667 -1.65833333 13 2.808333 0.5916667 1.991667 0.9416667 1.175 0.1416667 4.22500000 14 2.808333 -0.5916667 -1.991667 -0.9416667 -1.175 0.1416667 0.42500000 15 -2.808333 0.5916667 -1.991667 -0.9416667 1.175 -0.1416667 -0.50833333 16 -2.808333 -0.5916667 1.991667 0.9416667 -1.175 -0.1416667 -4.14166667 17 2.808333 -0.5916667 1.991667 -0.9416667 1.175 -0.1416667 -2.82500000 18 -2.808333 0.5916667 1.991667 -0.9416667 -1.175 0.1416667 3.17500000 19 2.808333 0.5916667 -1.991667 0.9416667 -1.175 -0.1416667 -1.75833333 20 -2.808333 -0.5916667 -1.991667 0.9416667 1.175 0.1416667 1.40833333 21 2.808333 0.5916667 -1.991667 0.9416667 -1.175 -0.1416667 -0.18333333 22 2.808333 -0.5916667 1.991667 -0.9416667 1.175 -0.1416667 -1.65000000 23 -2.808333 -0.5916667 -1.991667 0.9416667 1.175 0.1416667 -0.01666667 24 -2.808333 0.5916667 1.991667 -0.9416667 -1.175 0.1416667 1.85000000 attr(,"df") attr(,"df")$df N P K N:P N:K P:K Residuals 1 1 1 1 1 1 12 attr(,"onedf") attr(,"onedf")$onedf [1] FALSE attr(,"factors") attr(,"factors")$N [1] "N" attr(,"factors")$P [1] "P" attr(,"factors")$K [1] "K" attr(,"factors")$`N:P` [1] "N" "P" attr(,"factors")$`N:K` [1] "N" "K" attr(,"factors")$`P:K` [1] "P" "K" attr(,"factors")$Residuals [1] "block" "Within"